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Spontaneous Symmetry Breaking

[J Mass terms are forbidden by Gauge invariance:

Lm = —myyp = —m(YPpyr, + VrvR)
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SU(2) singlet SU(2) doublet
[0 We introduce an Higgs doublet to dodge the problem

[0 Choosing a proper Higgs potential we induce a non-vanishing vacuum
expecation value and masses for fermions and gauge bosons.
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Generation of mass

[1 Masses for the fermions come from Yukawa interactions:
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[0 The interactions of ¢ with the SM gauge bosons are completely
determined by its SU(3)xSU(2)xU(1) quantum numbers:
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[0 After exanding around the vev, the term |D,1.-:3‘J]2 induces masses for the
W and Z bosons and the term —)rugq'}TQ induces a mass for h:
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The SM lagrangian
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The quark Yukawas
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invariant under U(3)y, x U(3)p, x U(3)g,
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[J Proper counting of the parameters shows that the CKM matrix depends
on three angles and one phase.



Flavor changing currents

[ In phenomenological applications is more convenient to work in a basis
in which the mass terms are diagonal:
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Unitarity triangles
O B, triangle: V,,,V, + VeaViy + VigVi, = 0
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Short distance, Long distance

[0 There is a hierarchy between the W/Z/t scales and the energies/masses
of the external particles we are interested in:

My, Mz, M < 1N, Me, Mg

[0 This suggests that the physics at these two scales can be treated
independently

[0 Historically this is what happened for the p-decay

N
CO

3

=N



Example: B — D/l

[ The first step is to identify the “core” short distance interaction:
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[0 The second step is to relate the b and ¢ quarks to the particles we
observe:




Example: B — Xy

[ The first step is to identify the “core” short distance interaction:
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[0 Quark-hadron duality:
Xsehadrons Xse{quarks,gluons}

[J Optical theorem:
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Example: B — Xg7

[J This part of the calculation is perturbative (hopefully):
~
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[0 The b quark has non-perturbative overlap with the B meson:

(B‘ bﬁi |B) =T(B — Xs)




Effective Hamiltonian

[0 The strategy described in the previous slides allows to decouple the
problem of calculating short-distance effects from the complications of
non-perturbative QCD

[0 Note that after “integrating out” the heavy field, we are left with new
contact interactions:
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0 We construct an effective Hamiltonian that does not contain the W, Z
and t anymore, but has new operators.



Effective Hamiltonian contd
[Lsalnow.zt — 2 CiO;
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Wilson coefficients

 For example:
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J One advantage is that a given operator contributes to many different
processes



Convergence of perturbation theory

O Let us consider the perturbative expansion of a given amplitude:

A(i — f) ~ 14as(1+L)+a2(1+L+L?)+0(a3)

2
Ty ; .
where L = log 2—“ as = g2/(4r7) and Py IS @ generic external momentum
Pext

0 In general at order a” we will find terms proportional to a4 L", o2L" 1.

Q If paxy < m% asL ~ O(1) and the convergence of the perturbative
expansion is spoiled

L We need to find a way to get rid of these logs



Convergence of perturbation theory contd

O The effective Hamiltonian approach is precisely the framework that will allow
us to resum these logs at all orders in perturbation theory:
2
AGi— f) ~ 1+ aslog 21’ + -
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in the WC In the matrix element of the eff. operator

At = f) = C(p) (f10(w)| 1)

[ Unfortunately the problem is not solved yet: we can not choose a value of u
that eliminates at the same time the large logs in the Wilson coefficient and in
the operator matrix element



RG-Improved perturbation theory

O Using the fact that A(i — f) = C(u) {(f |O(n)] %) has to be p independent
we can write a differential equation for C':

dC(p)

T C(u)
anomalous dimension

Renormalization Group Equation

- the anomalous dimension has an expansion in o
- o depends on p (running coupling constant)

( dC o
(’_UJ) = —79 C(n) 0
dlog 47 as(uo) | 2%
1 5 C(p) = C(uo)
das(u) _ 55 9% s (1)
L dlog u Y4n

O We are now free to choose ,u2 = O(ngt)



Invitation: effective theories

O If a physical problem contains widely separated scales, it is almost always
worthwhile to pursue an effective theory strategy

mwy perturbative 2 integrate out

=
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mb dependence on external states (possibly non-perturbative)



Invitation: effective theories below m,

still perturbative = integrate out
>~ but pg,, ~ my !

(X10{w)|B) = CJIxd+0 (AQCD)
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/\QCD non-perturbative



Some effective HamiltonianS' b—>s transitions
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Some effective HamiltonianS' B mixing
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Effective Hamiltonian and New Physics

O A great advantage of the effective Hamiltonian approach is the extreme
transparency to new physics

 Since the matrix elements of the various operators are dominated by large
distance physics, new physics can enter only by:
1. maodifying the Wilson coefficients
2. inducing new operators
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