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Outline
 Overview

 Analysis Strategy
Cross-checks

 Theoretical and systematic 
uncertainties

 Results and conclusions
Future research

 Many recent summaries of 

Tevatron Higgs programs:
 Jay Dittmann, Users Meeting, June 2, 2010 

Matthew Herndon, Wine & Cheese on March 12, 2010

Sergo Jindariani, Wine & Cheese on March 13, 2009
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The Tevatron Collider
 Collides pp at √s = 1.96 TeV

 Thanks to AD for delivering 
luminosity...

 And CDF for keeping the 
detector running well...

 And CD for processing data!

 CDF acquired luminosity 
~7.4 fb-1

Using 5.9 fb-1 for 
today's result



J. Pursley 6June 18, 2010

The CDF II Detector
 General multipurpose detector

 Excellent tracking and mass resolution:
 Silicon inner tracker
 Drift chamber outer tracker

 Calorimeters
 Segmented sampling EM 

and Hadronic

 Muon chambers
 CMU/CMP (|η| < 0.6)

 CMX (0.6 < |η| < 1.0)

 Complex geometry
 Try to maximize Higgs 

acceptance
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SM Higgs Boson Decay
 Higgs decay mode depends on Higgs mass m

H

 Low Mass: H → bb

 High Mass: H → WW

 For gg → H → WW,

 Peak sensitivity m
H
~165

High MassLow Mass

135 GeV

BR from HDECAY
M. Spira
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Analysis Strategy

 Final State Signature
 Cross Checks
 Signal Regions
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General Analysis Approach
1.  Select inclusive event 

sample that maximizes 
acceptance for Higgs 
signal
● For m

H
 = 165 GeV, CDF 

reconstructs ~7 events 
per inverse fb

2. Model all backgrounds 
and cross check with 
data using control regions

3. Use advanced analysis 
tools to separate signal 
from background based 
on event kinematics
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H → WW Final States
 BR(W→hadrons) ~ 68%

 Large QCD backgrounds

 Investigate adding channels 
with one leptonic W and one 
hadronic W

 Dilepton (e, μ): BR ~ 6%

 Sensitive to τ → (e, μ)

 Small BR, but...              
clean, easy to trigger

 Lepton + τ
had

: BR ~ 4%

 Recently added at CDF
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H → WW → llνν Backgrounds
 SM processes with similar fnal 

states considered backgrounds

 All cross sections measured by 
Tevatron experiments
 Many discovery analyses:

 WW, WZ, ZZ
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Analysis Strategy

 Final State Signature
 Cross Checks
 Signal Regions
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 Simple event counting won't work
 S/B = 0.015 in most sensitive search channel

 Use multivariate analysis (MVA) techniques to 
discriminate between signal and background
 Matrix Elements (ME), Artifcial Neural Networks (NN), 

Boosted Decision Trees (BDT)

 Typically add 10-20% in sensitivity beyond that achieved 
using the best 1-2 variables

 Since we rely on kinematic shapes to separate 
potential signal from backgrounds, important aspect of 
these searches is how well we model these shapes
 Specifc control regions designed to test modeling of 

individual backgrounds (whenever possible)

Strategy
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WW Cross Section
 Measure WW cross 

section in 0 jet signal 
region
 Two opp-sign leptons, 

high missing energy

 Binned maximum 
likelihood ft to ME 
likelihood ratio distribution

World's best measurement!
 Good agreement with theory

PRL 104, 201801 (2010)
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Analysis Strategy

 Final State Signature
 Cross Checks
 Signal Regions
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Summary of Signal Regions
Channel Main Signal Main 

Background
Most important 
kinematic variables

OS dileptons 0-jets gg → H WW LR
HWW

, ΔR
ll
, H

T

OS dileptons 1-jet gg → H WW, DY ΔR
ll
, M

T
(ll,E///

T
), E///

T

OS dileptons 2+ jets Mixture tt  H
T
, ΔR

ll
, M

ll

OS dileptons low M
ll
, 0+1 jets gg → H Wγ p

T
(l

2
), p

T
(l

1
), E(l

1
)

SS dileptons 1+ jets WH W+jets N
jets

, E///
T
 signif, H

T

Trileptons, no Z-cand, all jets WH WZ M
T
(l,E///

T
), ΔR

ll

close, Flavor

Trileptons, Z-cand and 1-jet ZH WZ E///
T
, ΔR

ll
(W-lep,j), E

T
(j)

Trileptons, Z-cand and 2+ jets ZH WZ, Z+jets ΔR
ll
(W-lep,j), M

jj
, M

W

OS dilepton, e + hadronic τ gg → H W+jets ΔR
lτ
, τ id variables

OS dilepton, μ + hadronic τ gg → H W+jets ΔR
lτ
, τ id variables

No Channel Left Behind
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Summary of Signal Regions
Channel Main Signal Main 

Background
Most important 
kinematic variables

OS dileptons 0-jets gg → H WW LR
HWW

, ΔR
ll
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OS dileptons 1-jet gg → H WW, DY ΔR
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, M

T
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OS dileptons 2+ jets Mixture tt  H
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ll
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OS dileptons low M
ll
, 0+1 jets gg → H Wγ p

T
(l

2
), p

T
(l

1
), E(l

1
)

SS dileptons 1+ jets WH W+jets N
jets

, E///
T
 signif, H

T

Trileptons, no Z-cand, all jets WH WZ M
T
(l,E///

T
), ΔR

ll

close, Flavor

Trileptons, Z-cand and 1-jet ZH WZ E///
T
, ΔR

ll
(W-lep,j), E

T
(j)

Trileptons, Z-cand and 2+ jets ZH WZ, Z+jets ΔR
ll
(W-lep,j), M

jj
, M

W

OS dilepton, e + hadronic τ gg → H W+jets ΔR
lτ
, τ id variables

OS dilepton, μ + hadronic τ gg → H W+jets ΔR
lτ
, τ id variables

No Channel Left Behind
See S. Jindariani's
W&C for details
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Hadronic Tau Backgrounds
 Very different mix of backgrounds for 

events with one hadronically decaying 
tau lepton

 QCD and Z → ττ backgrounds

 Unique: rely on τ ID variables as well as 
kinematics to discriminate between 
signal and background
 Need cross checks to verify both

 Form orthogonal control 

regions to study:
 W+jets (both eτ and μτ)

 QCD (for eτ)

 Z → ττ (for μτ)
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Hadronic Tau Searches
 Dominant background W+jets

 Modeled by ALPGEN MC 
instead of with data

 Use different MVA technique
 Boosted Decision Trees 

instead of NN

 Overall good modeling in 
both eτ and μτ

 Expect ~1.5 signal 
events, ~730 backgroud
 Expected sensitivity at 

165 GeV is ~15 x SM

Signal x 20
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Improvements since March 2010
 Updated all search channels to 5.9 fb-1

 Drell-Yan missing E
T
 correction

 Tightened electron selection for the same-sign dilepton 
search
 Reduces W+jets events with minimal impact on signal

 New WW MC@NLO sample
 Old sample had limited statistics

 Updated to latest version of MC@NLO and generated 10x 
more statistics

 Improved treatment of systematic uncertainties
 More sophisticated determination of both rate and shape 

uncertainties

mailto:MC@NLO
mailto:MC@NLO
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Theoretical and 
Systematic 

Uncertainties

 Overview
 Signal Uncertainties
 Background Uncertainties
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H → WW → llνν Systematics

 Two classes of 
systematics:

Rate
 Affect only 

normalization

Shape
 Modify output of 

discriminant

Systematic (%) Sig Bkgs

Cross section 5-12 5-10

Conversions 0 10-20

NLO diagrams 3-10 10

PDF model 3-12 1-5

Jet energy scale 5-10 1-30

Lepton ID 2 2

Trigger effciency 2-3 2-3

Luminosity 6 6

Rate

Shape
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Determination of Uncertainties
 Two main categories of systematics

 Cross SectionCross Section: theoretical uncertainty on the production 
cross section for a process
 Rate systematic only

 AcceptanceAcceptance: uncertainty on our modeling of the 
acceptance or kinematic variables for a process
 Rate and shape systematics

 For today, touch on the main signal and background 
uncertainties
 Gluon fusion signal: theoretical uncertainties affect both 

cross section and acceptance

 Also look at theory uncertainties for the WW background

 Example of shape effects for the jet energy scale
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Theoretical and 
Systematic 

Uncertainties

 Overview
 Signal Uncertainties
 Background Uncertainties
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Gluon Fusion Cross Section
 Limits depend signifcantly on theoretical Higgs 

production cross sections
 Gluon fusion, the dominant production process, has the 

largest uncertainties!

 Currently use inclusive cross section calculations of 
de Florian and Grazzini (arXiv:0901.2427v2)
 Soft-gluon resummation to NNLL

 Proper treatment of b-quarks to NLO

 Inclusion of two-loop electroweak effects

 MSTW2008 Parton Density Functions

 In good agreement with calculations of Anastasiou, 
Boughezal, and Petriello (arXiv:0811.3458v2)
 Fixed-order calculation up to NNLO
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Cross Section Uncertainties
 Dominant sources of theoretical uncertainty:

 Higher-order QCD radiative corrections (Scale)

 Parton density functions (PDF)

 Because we separate on number of reconstructed jets, 
must determine topology-dependent scale factors

 Estimate scale uncertainties by varying renormalization 
and factorization scales between 
m

H
/4 and m

H

 m
H
/2 is central value for fxed-order

 Use MSTW2008 alternative error 
sets which vary both α

S
 and 20 PDF 

ft parameters
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Modeling Gluon Fusion Signal
 Use PYTHIA, which is LO but has 

its own mechanisms for including 
effects of soft gluon radiation
 Generate samples in 5 GeV steps 

from 110 up to 200

 Because kinematics are important, 
re-weight PYTHIA events at 
generator-level to match Higgs p

T
 

spectrum obtained from full NNLL 
calculation
 Self-consistent with normalizing to 

NNLL inclusive cross section

 Signal acceptance is determined 
from re-weighted sample
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Acceptance Uncertainties
 We assign scale and PDF 

uncertainties on the acceptance, in 
addition to the cross section

 Quantify variations in Higgs p
T
 and 

rapidity spectra as a function of 
scale and PDF choices

 Apply additional reweightings until 
PYTHIA samples match variations

 Assign uncertainties based on 
observed changes in signal 
acceptance by channel

 Also allows us to assign shape 
uncertainties to signal templates
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Theoretical and 
Systematic 

Uncertainties

 Overview
 Signal Uncertainties
 Background Uncertainties
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WW Uncertainties
 Dominant background in most regions where gluon 

fusion is dominant signal
 Want to model kinematics as well possible

 Use NLO Monte Carlo: MC@NLO

 Treat uncertainties in same manner as for gluon fusion

 Use the WW p
T
 and rapidity spectra to re-weight and 

assign uncertainties based on changes in acceptance

mailto:MC@NLO
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Other Shape Systematics: JES
 Negligible shape effects in regions where we separate 

by jet multiplicity or use all jets
 Rate uncertainty: moves events between jet bins

 Affects both backgrounds and signals

 Shape effects come in regions which reject events 
based on jet multiplicity
 Same-sign dileptons: remove 0 jet events

Signal: WHBackground: WZ
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Results
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Updated CDF H→WW Result
 Expected ~5% 

in sensitivity 
from adding 
luminosity

 Additional 
systematics 
reduced this to 
~2-3%

Expected Limits at
160: 1.05 x SM
165: 1.00
170: 1.20

Reaching SM
sensitivity with a

single experiment!
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Updated CDF H→WW Result
 Observed limit 

is slightly higher 
than expected 
over the mass 
range

 Previously, 
expected and 
observed 
followed each 
other closely

Observed (Expected) Limits at
160: 1.32 (1.05)
165: 1.08 (1.00)
170: 1.28 (1.20)
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Observed limits at 160 GeV
 Number of events in data increased more than expected

 Not at high S/B NN output, but over the entire range

Expected 1.26
Observed 1.27

Expected 1.05
Observed 1.32
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Sensitivity Projections

 Improvements will push Tevatron sensitivity!

Sensitivity Range
from March 2010

High Mass
analyses only!
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Projected Improvements
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How to Improve?
 Add more acceptance

 New search channels:

 H → WW → lνjj (in progress)

 Addition of lower p
T
 leptons and triggers

 Investigate loosening isolation cut on leptons
 Higgs leptons very close together, could lie in each other's 

isolation cones (especially for low M
ll
 events)

 Need to understand rate of lepton fakes with isolation

 Improve analysis techniques
 Still many ideas!

 Optimize neural networks for low/high mass separately, 
improve missing E

T
 description, study lepton isolation...



J. Pursley 48June 18, 2010

Summary
 Exciting times for Higgs boson searches!

 Tevatron making great strides in high mass searches
 Sensitivity continues to improve faster than luminosity 

scaling

 Low mass searches also 
approaching SM sensitivity

 At m
H
 = 115, 2.4 x σ

SM

 Soon “high mass” will 
become important to probe 
intermediate mass range

 Current Tevatron exclusion 
in the Higgs mass range 
162-166 GeV
 More to come!
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 To Fermilab and the Accelerator Division for providing 
the data

 To the CDF Collaboration for collecting the data with 
high effciency

 And especially, the dedicated members of the H→WW 
analysis group at CDF for analyzing the data!
 Particularly Massimo Casarsa, Eric James, Sergo 

Jindariani, Thomas Junk, Jason Nett, Rick St. Denis,  
Geumbong Yu
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Extra Slides
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Standard Model of Particle Physics
 At high energies, weak 

and electromagnetic 
forces can be unifed into 
one force – electroweak
 But at low energies, they 

behave very differently

 Photon is massless 
while W and Z bosons 
are heavy

 How does electroweak 
symmetry breaking 
occur?
 In the SM, via the Higgs 

Mechanism
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SM Higgs Mechanism
 To break the symmetry of the electroweak force:

Electroweak force is a gauge theory – SU(2) ⊗ U(1)

 Interactions follow from symmetries → 4 massless 
gauge bosons

 Introduce nonzero scalar feld permeating all space
 To preserve gauge invariance, 3 of the 4 gauge 

bosons gain mass (W+, W-, Z0)

 One remaining degree of freedom:
Manifests as a massive, spin-0 particle associated 

with the scalar feld
 The Higgs boson! – but no prediction for its mass

Finding the Higgs boson would directly test the theory



J. Pursley 53June 18, 2010

Searches for SM Higgs Boson

Plot from Tommaso Dorigo's blog

 In late 1990s, CERN made 
direct searches for SM Higgs

 Excluded m
H
 < 114.5 GeV  

at 95% C.L.

 Indirect constraints from 
electroweak data prefer 
lighter Higgs (m

H
 < 154)

 Combined with LEP results 
→ upper limit of m

H
 < 185

 Now Tevatron continues with 
direct searches

 We know where to look!
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H → WW → llνν Triggers
 Extract handful of Higgs 

events from background 11 
orders of magnitude larger!

 High p
T
 lepton triggers

 Central electrons

 Muons (CMUP, CMX)

 Forward electrons + Met

 One lepton must satisfy 
trigger requirements

 Use luminosity ~4.8 fb-1

 Require good detector 
performance

1

Higgs gg→H 0.03-0.3
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H → WW → llνν Selection
 Trigger on high p

T
 lepton

 Two opposite-charge leptons (e 

 p
T
(l

1
) > 20, p

T
(l

2
) > 10 GeV

 Dilepton mass M
ll
 > 16 GeV

 Suppress low mass backgrounds

 Require large missing transverse energy (Met)
 Backgrounds can mimic Met if the energy of a jet or 

lepton is mismeasured in the detector

 Classify events by the number of reconstructed jets
 Three categories: 0 jet, 1 jet, and 2 or more jets

 Each has a different background composition
 Better to optimize for signal in each separately
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H → WW Analysis, 4 years ago
 Based on 360 pb-1 of data

 Considered only gluon fusion 
Higgs production

 Used dilepton Δφ as discriminant

 Published: PRL 97, 081802 (2006)

 With 5 fb-1 using this method,

  Expected limit for m
H
 = 160 GeV:  

~3 x σ
SM

 

 To reach SM sensitivity, need to 
improve the method!
 Increase lepton acceptance

 Optimize signal separation

 Multivariate analysis techniques
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Neural Network

 Use NeuroBayes neural networks
 Commercial NN package with fast, robust training methods

 Each network has 3 layers: 
 Input layer (n nodes), hidden layer (n+1), output layer (1)

 Trained on a weighted combination of signal + background

 Excess of data at high NN score would indicate signal!
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Signal Regions
 See S. Jindariani's wine & chees 

from March 2009 for more details on 
our primary search regions

 Opposite-sign dileptons divided by 
number of reconstructed jets
 0-jet: WW and gluon fusion dominate

 1-jet: WW and DY backgrounds

 2+ jets: t-tbar dominates

 Also consider separately a low-
dilepton mass region (M

ll
 < 16 GeV)

 Wγ background, gluon fusion signal

 Same-sign dileptons
 W+jets background, VH signal
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Matrix Elements

 Event-by-event probability density

 Model 5 modes:
 HWW, WW, ZZ, Wγ, W+jet

 Construct Likelihood Ratio →
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Background Modeling
 Most backgrounds modeled by Monte Carlo

 WW by MC@NLO, others by Pythia or Baur (Wγ), except...

 W+jets uses data-driven estimate of fake leptons:
 Select identifed leptons (numerator) and “fakeable objects” 

(denominator) in jet data samples

 Subtract ewk contributions from Z→ee/μμ and W→e/μ ν MC

 Calculate ratio – for each lepton category
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Setting a limit
 Use Bayesian limits calculator

 Tom Junk's MCLimit program

 Prior is fat in the number of Higgs boson events

 Return the 95% credibility upper limit (C.L.)

 Input distributions for each channel:
 1 NN output template for each event hypothesis:

 gg→H, ZH, WH, VBF, WW, WZ, ZZ, Wγ, W+jets, DY, tt

 Total of 8 (11) histograms at each Higgs mass

 For a combined limit, use templates for all channels 
being combined

 Include all systematic uncertainties as nuisance 
parameters using pseudo-experiments


