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Microwave Stochastic Cooling Review 
 Suggested in 1969 by Simon van der Meer 
 Naïve cooling model for a transverse plane 

 90 deg. between pickup and kicker 
 g  

Averaging over betatron oscillations yields 
222 2

2
1  gg   

Adding noise of other particles yields 
     2 2 2 2 2 2

sample sampleg N g g N g          
where Nsample is determined by number of  
   particles affected by single particle kick 

 That yields 
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 To get a correct kick the longitudinal particle displacement relative 
to the reference particle should be sufficiently small  
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Microwave Stochastic Cooling Review (2)  
 What is missed in the above model 

 Dependence of cooling rates on momentum 
 What is Nsample ? 
 Dependence of diffusion on momentum 
 Signal suppression (negative feedback)   / 1in in beamU U g g     

 Stochastic Cooling Theory was built in 70-th  
 CERN + Berkley + Fermilab + Novosibirsk + …  

 The cooling process is described by the Fokker-Planck equation  
 The theory is built on the same principle as plasma theory  

 which is a perturbation theory and 
 works well for large number of particles in sample 

 Good agreement between measured and computed cooling 
rates for Fermilab cooling systems used in Run II 
 Beam based measurements and their analysis drove the 

cooling system upgrades!!! 
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Microwave Stochastic Cooling Review (3) 
 Equation describing evolution of long. distribution, ˆ( , )p t  . 

  1ˆ ˆ( ) ( )
ˆ ˆ ˆ2

F p D p
t p p p
 

    
          

    ˆ /p p p   - relative momentum deviation 
 Eq. can be used for any long. cooling  

 Long. cooling force can be expressed as 
 a sum over revolution harmonics 
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 0 ˆ1n n p     - n-th harmonic of particle  
                            revolution frequency   
1  - the pickup-to-kicker partial slip  

          factor so that 0 1 ˆt T p    

  1A   for filter cooling, 
                   0A   otherwise  
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 at the lower end of one 

octave band for optimal gain 

Microwave Stochastic Cooling Review (4) 
 Signal suppression  
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 Diffusion  
 Usually Schottky noise is larger than 

thermal noise, ( )thermS  : 
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Microwave Stochastic Cooling Review (4)  
 Signal suppression reduces both the cooling force and 

diffusion.  
 Therefore it weakly affects the cooling rates  

 but yields larger optimal gain value (~6 Db) 
 Optimal gain is chosen to maximize overall cooling similar to the 

simplified model above 
 Slip factor and partial slip factor 

 non-zero   results in mixing of particles of different “samples”  
 Cooling rates grow   as long as Schottky bands are not 

overlapped 
 Non-zero partial pickup-to-kicker slip factor, , yields finite 

momentum range for cooling acceptance, 
  1max

/ 1 /p p       
 Non-zero 1  is required for the 

transit time longitudinal cooling 
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Microwave Stochastic Cooling Review (5) 
 Longitudinal Cooling Types  

 Palmer cooling    ˆ ˆ, pickupG p D G p   
- requires non-zero dispersion in pickup 

 G   - smooth function within one  
revolution frequency band 

 Filter cooling:         0ˆ , 1 , 1i TG p G A e A       
- requires a notch filter tuned to the revolution frequency of reference 

particle  

 Transit time stochastic cooling   
- requires non-zero partial slip factor between pickup and kicker  

 Microwave stochastic cooling limitation  
 Damping rate for optimal 1 octave system operating at band overlap and 

bunched beam  

max sf
CN
   

 For LHC beam: s  9 cm, N  1.2·1011, C = 26.66 km, fmax=8 GHz 
   ~ 12,000 hour 
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Optical Stochastic Cooling  
 Suggested by Zolotorev, Zholents and 

Mikhailichenko (1994) 
 OSC obeys the same principles as the 

microwave stochastic cooling, but exploits 
the superior bandwidth of optical amplifiers 
~ 1014 Hz 

 Pickup and kicker must work in the optical range and support 
the same bandwidth as the amplifier 
 Microwave pickups cannot be scaled to m 
 Undulators were suggested  

 We need a “state of art” 
optical amplifier 
 Power? 
 Small signal delay? 

 

Amplifier  [nm] f/f 
Ti-Sapphaire 800 0.2 
Dye 300-900 0.2 
Parametric 350-1500 0.2 
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Principles of Optical Stochastic Cooling  

  
  Undulator can be used both 

as a pickup and as a kicker 
 Effective for longitudinal kicks 
 Transverse kick is suppressed for 

ultra-relativistic beam 
   F 0ce   E βB  

 Optical stochastic cooling 
can deliver damping rates 4 
orders of magnitude larger 
than usual (microwave) 
stochastic cooling 
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Principles of Optical Stochastic Cooling (continue) 

 
 

 For small motion amplitude 22
wgl




  
 To obtain transverse cooling one needs coupling between 

transverse and longitudinal degrees of freedom 
 It can be achieved  by locating pick-up and kicker in 

positions with nonzero dispersion function  
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MIT-Bates Proposal (2007) 
 Few proposals were considered: Tevatron, RHIC, … 

 but they never was approved to go to something practical. 
 MIT-Bates group was close to be approved but still did not get support  
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Mpk - pickup-to-kicker matrix 
Mkp - kicker-to-pickup matrix 
M = MpkMkp – ring matrix 
= 1+2  

Basics of OSC 
Pickup-to-Kicker Transfer Matrix  
 Vertical plane is uncoupled and we omit it in 

this consideration  
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 Symplecticity ( MT U M = U ) binds up 
M51,M52 and M16,M26   

 All matrix elements can be  
expressed through 1, , , , (or )D D     

 Partial momentum compaction (slip factor) 
is related to M56 ( v c )   
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 M56 is positive if a particle with positive p 
moves faster than the reference particle  
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Basics of OSC - Damping rates 
Linearized longitudinal kick:   
 
 Using the perturbation theory and symplecticity of undamped 

motion one obtains the cooling rates  
 
 

 
 The sum of the decrements is 
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Basics of OSC - Cooling Range 
 The cooling force depends on s nonlinearly   

      )sin()sin(sinsin maxmax
ppxx aask

p
p 










  
where ax & ap are the lengthening amplitudes due to  and L 
motions measured in units of laser phase (a = k s) 

 The form-factor for damping rate of longitudinal cooling for 
particle with amplitudes ax & ap 

     






22
sinsinsinsin2),(2

px
pppxx

p
px

ddaa
a

aaF    

     )()(2),( 102 px
p

px aJaJ
a

aaF   

 Similar for transverse motion 

     )()(2),( 101 xp
x

px aJaJ
a

aaF   
 Damping requires both lengthening 

 amplitudes be smaller than 2.405 
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Basics of OSC – Sample Lengthening on Pickup-to-Kicker Travel  
 Zero length sample lengthens on its way from pickup-to-kicker 

   
p
pppddxdpxfpMMxM xxxs


 

~,~~,,~ 2
111

2
565251

  
 Performing integration one obtains for Gaussian distribution 
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
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 Both p/p and  contribute to 

the lengthening  
 While in linear approximation p 

and p do not affect damping 
rates they affect sample 
lengthening 
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 Liénard-Wiechert potentials and E-
field of moving charge in wave zone  
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Ex for K=1 

Basics of OSC – Radiation from Undulator  
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 Radiation of ultra-relativistic 

 particle is concentrated in 1/
 angle 

 Undulator parameter:   
0
22
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e
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
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 For K ≥ 1 the radiation is mainly  
radiated into higher harmonics  
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Basics of OSC – Radiation Focusing to Kicker Undulator 
 Modified Kirchhoff formula  

   
e

2
i r r

S

E r
E r ds

ic r r






    

=>       1 e
2

i r r

S

r E r
E r ds

ic r r



 


  

 Effect of higher harmonics 
 Higher harmonics are normally located outside window of optical 

lens transparency and are absorbed in the lens material 
 Only first harmonic was retained in the calculations presented below 

 
Dependences of retarded time (tp) and Ex on time for helical undulator 
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Basics of OSC – Longitudinal Kick for K<<1 
 For K << 1 refocused radiation of pickup undulator has the same 

structure as radiation from kicker 
undulator. They is added coherently: 

 1 2 /2
1 2 12 cos / 2i ie e   E EE E E E  

 Energy loss after passing 2 undulators 

   22 2 2 2
1 1 56 14cos / 2 2 1 cos 2 1 cos pU E kM

p
 

  
        

  
E E E  

 Large derivative of energy loss on  
momentum amplifies damping rates and 
creates a possibility to achieve damping  
without optical amplifier 

 SR damping:  ||_ 0
2 SR

SR
U f
pc

 
  

 OSC:              

 
56 max/

||_ 0 56 0
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2 2
/

kM p pwgl wgl
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U U Gf GkM f
pc pc p p

     
     

 

where G - optical amplifier gain, (p/p)max  - cooling system acceptance  
 2 2

||_ OSC B L K L     - but cooling efficiency drops with K increase above ~1 
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Basics of OSC – Longitudinal Kick for K<<1(continue) 
 Radiation wavelength depends on   as 

 2 2
2 1

2
  


   
Limitation of system bandwidth by (1) optical amplifier band or  
(2) subtended angle reduce damping rate  
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 For narrow band: 0
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 
      
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      where 
4 2 2

0 2 4
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Fe B LU
m c
 

  
  the energy radiated in one undulator  
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Basics of OSC – Correction of the Depth of Field  
 It was implied above that 

the radiation coming out of 
the pickup undulator is 
focused on the particle during its trip through the kicker 
undulator 
 It can be achieved with lens located at infinity  

2

1 1 1 1 1 1 1
2 2 / 4
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F s F s F F s F F F F
     

        
  but this arrangement cannot be used in practice  

 A lens telescope can address this problem within limited space 
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Basics of OSC – Radiation from Helical Undulator  
 Assuming that the lens is “located at infinity” and only first harmonic 

of undulator radiation contributes to the electric field at the focal 
point one obtains the total kick value:  

   
4 2 2

2
_ max2 a4 m x

4 ,,
3 hhOSC H Ge B LU K
m c

F KK F      
Fitting of numerical integration yields: 

  2 4

1, , 4
1 2.15 1.28h eF K K

K K
   

   

 

 Dependence of wave length on :   2 2 2
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2
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Basics of OSC – Radiation from Flat Undulator  
 For the same value of peak magnetic field flat undulator radiates two 

times smaller energy than the helical one:  

   
4 2 2

20
_ max2 4 max,41 ,

2 3OSC F f fGF Ke B LU K F K
m c

     
Fitting results of numerical integration yields: 

  2 3 4

1, , 4
1 1.07 0.11 0.36h eF K K

K K K
   

    

 
 For both cases of the flat and helical undulators and for fixed B  

a decrease of wgl  and, consequently,  yields kick increase 
  but wavelength is limited by both beam optics and light focusing  

 Dependence of wave 
     length on : 

2
2 2

2 1
2 2

wgl e

eK

   




  
       


 

 Flat undulator is “more 
effective” than the 
helical one 

 For the same K and 
wgl flat undulator 
generates shorter 
wave lengths 
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Optical Stochastic Cooling for the LHC 
How fast we need to cool 
 Typical luminosity 

lifetime ~10-15 
hour 

1 2
04 b

N NL f n


  
  emittance growth 

is the main source 
of luminosity loss 

 Thus the emittance 
damping time of about 10 hours is required 
 It corresponds to the amplitude damping rate of 20 hours 

 In most of future scenarios 10 hours damping time (in 
amplitude) should be sufficient  
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Main parameters for LHC OSC  
Beam energy 6 TeV 
Bunch population 1.5·1011 
Number of bunches 2808 
Initial rms norm. emittance 2 mm mrad 
Initial momentum spread 0.95·10-4 
Basic Wave Length of OSC 200 nm 
Undulator type helical 
Undulator parameter  2 
Undulator magnetic field 12 T 
Undulator period  3.3 m 
Undulator aperture  2*3.5 cm 
Number of periods  23 
Undulator length  75 m 
Total power of SR from one undulator 33 W 
Longitudinal cooling range  3.1  
Transverse cooling range  5.1  
Longitudinal amplitude cooling time† 18 h 
Transverse amplitude cooling time†‡, x=y  9.5 h 

† Takes into 
account loss in 
four lenses and 
kick reduction 
due to finite 
radius of 
particle motion 
in undulator  
 
‡Takes into 
account that 
both  planes  
are damped due 
to x-y coupling 
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Comparison of Helical and Flat Undulators  
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 Helical undulator makes about 1.5 times stronger kick for given 

light wavelength, magnetic field and undulator length  
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Beam Optics for LHC OSC 
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Beta-functions and dispersion for OSC section; 
undulators are shown by yellow rectangles 

 

 
Total length of cooling section  270 m 
Magnetic field in chicane dipole  10 T 
Chicane dipole length 14 m 
Chicane dipole aperture 2*60 mm 
Horizontal beam offset in chicane 122 mm 
Delay in the chicane 0.69 mm 
M56 1.25 mm 
Partial M56 0.26 mm 

Parameters of Quadrupoles 
 L [m] G [kG/cm] 
Qf 8 17.2 
Qd 8 -15.7 
Qc 3 -2.45 
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Sample lengthening & Longitudinal Beam Optics  
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M56 and partial slip factor through cooling section 
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Ration of sample lengthening due to betatron motion to the  
transverse cooling acceptance through the cooling section 

 High accuracy 
of beam optics 
control is 
required to 
prevent 
uncontrolled 
sample 
lengthening  
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Light Optics for LHC OSC 
 Only first harmonic of undulator 

radiation is taken into account in 
the above damping rate estimate 

 Higher harmonics are absorbed in 
the lens 

 
Data are taken from: 
http://www.hep.ucl.ac.uk/~jolly/pepperpot
/Quartz%20optical%20properties.pdf 

 

 
Dependence of the first harmonic wave length on 
angle (red) and kick strength for a lens with radius 
determined by subtended angle   (a = Lblue, 
arbitrary units)  



Optical stochastic cooling, Valeri Lebedev, July. 27, 2012  29

Light Optics for LHC OSC (continue) 
 4 lens telescope with total length of 20 m and 1 m space between 2 

central lenses 
 Large length increases focusing length and decreases lens thickness 
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 L1,4 L2,3 
Lens focusing distance, cm  825 35.5 
Lens radius, mm 59 15 
Lens thickness (quartz, n=1.5), mm 0.42+0.11 0.10+0.08 
Total delay in 4 lenses, mm 0.69 

 

 Chromaticity of lens focusing is corrected by adjustments of lens thickness 
on the radius 
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Effective Bandwidth  
 Bandwidth is determined by number of undulator periods 

 ~60 THz for 23 periods  
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 High accuracy for delay control 

 L/L~2·10-5  
 /15=13 nm (25 deg) versus 

total delay of 0.69 mm 
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Comments for the LHC OS cooling 
 Passive optical stochastic cooling is sufficient to prevent 

emittance dilution and perform luminosity leveling 
 Operation in UV is required to achieve this goal  

 Cooling effectiveness grows with undulator magnetic field 
 Using larger B would increase cooling 

 Beam optics manipulations allows one to adjust redistribution 
of cooling decrements between different degrees of freedom 

 Further studies are required for: 
 compensation of quartz chromaticity in the light optics  
 effect of higher harmonics of radiation on cooling 
 effect on beam focusing non-linearities on sample lengthening  

 better cooling for the core is expected 
 Experimental proof is highly desirable 

 It can be performed in a small ring with electrons (E~150 MeV) 
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IOTA – Test ring for Non-Linear Optics and Optical 
Stochastic Cooling 
 Small test ring in NML building 
 It is planned to test both OSC scenarios: with and without 

optical amplifier 
 ASTA injector (~20 MeV) would be sufficient for filling the 

ring 
 

   
     

SC 1.3 GHz linac         Empty room for IOTA 
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IOTA Schematic and Main Parameters  

 
 pc = 150 MeV, electrons (single bunch, 10^9) 
 ~36 m circumference 
 One of non-linear inserts will be replaced with OSC section 
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 Optics in OSC region for 2 m wavelength and s=4 mm  
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Twiss parameters (top) and rms beam sizes through OSC section 
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Optics for 2 m wavelength and s=4 mm (continue) 
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Dependence of ratio of decrements and longitudinal cooling acceptance (expressed in units of 4p) 
on dispersion and its derivative at the chicane entrance  
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Optics for 2 m wavelength and s=4 mm (continue) 

 
Dependence of transverse cooling acceptance (expressed in units of 4x) on beta- and alpha- 

functions at the chicane entrance  

      
Dependence of transverse and longitudinal cooling acceptances (expressed in units of 4x,p) on 

focusing strength of quadrupole located in the chicane center  
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Single Electron Cooling and Quantum 
Electrodynamics 
 The above considered proposal is based on the classical 

electro-dynamics 
 It ignored quantum character of the radiation and 

absorption of photons 
 Study of dynamics of single electron motion in a storage ring 

was carried out in Novosibirsk 
 Optical stochastic cooling can significantly extend 

possibilities and reach for such studies 
 Formulating a program for such studies is next step we plan 

to do 
 An advice from the community is solicited   
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Conclusions 
 Optical stochastic cooling looks a promising technique for the 

LHC 
 It would allow well controlled luminosity leveling and 
 Potentially can double its average luminosity 

 Experimental study of OSC is planned in Fermilab 
 It is aimed to validate cooling principles and to demonstrate 

cooling with and without optical amplifier 
 More work is required to clarify details of the cooling 

scheme and formulate a technical proposal  
 



Optical stochastic cooling, Valeri Lebedev, July. 27, 2012  39

 
 
 
 
 
 
 

Backup Slides 



Optical stochastic cooling, Valeri Lebedev, July. 27, 2012  40

10 0 10

2

1

1

2

10 0 10

2

1

1

2

Liouville’s Theorem 
 It asserts that the phase space distribution function is 

conserved along trajectories of Hamiltonian system  
 I.e. the phase space taken by beam is conserved in during its motion 
 Linear case 

 In addition to 6D phase space conservation the emittance of each 
mode is a motion integral (even in the case of arbitrary coupling) 
 Symplectic transform  R diagonalizes bilinear form 1 x x  

 1 1 2 2 3 3, , , , ,T diag         R R , 
k can be found from characteristic equation:   

 Cooling should beat the Liouville’s theorem  energy dissipation  
 It is straightforward for electron and laser cooling 
 How it works in the stochastic cooling (Hamiltonian system) 

 
 

    
        

det 0i


     
U
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Cooling parameters for IOTA 
 Choice 2 Choice 3 MIT-Bates 
Beam energy, MeV 86  150 300  
SR transverse damping rate, s-1, x 0.29  3.7  0.2  
Machine circumference, m 37.4  190.2  
Number of particles per bunch  3·108 108 
Number on bunches  1 12 
Rms horizontal emittance (SR equilibrium), cm  1.21*10-7  3.4*10-7  98*10-7  
Rms momentum spread (SR equilibrium) 0.857*10-4 1.48*10-4 1.64*10-4 
Rms bunch length (SR equilibrium), cm 11 11  - 
Optical amplifier wave length, m 6  2  2  
Delay in the chicane, mm  10  4  6  
Electron beam offset in the chicane, mm  50  32  98 
Undulator length [m] / Number of periods  1 / 10 2 / 20 
Undulator type  flat flat 
Undulator parameter, Ku   2.2 3.5 
Ratio of decrements,  s/x  3 5 ~7 
Cooling range in  6 4 2.8 ? 
Cooling rates with gain equal to 1, s-1,  s/x 10/32 12/62 - 
Optical amplifier bandwidth  ~10% ~10% 10% 
Optical gain (amplitude)   15 10 90 
Optical amplifier power, mW 30 30 - 
Cooling rates with optical amplifier, s-1, s/x 160/500  110/550  - 
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Beam optics 
Sequence of optics adjustments 
 Set required delay in the chicane, s 
 Adjust focusing in the chicane center to get desired M56 

 That sets the sum of damping rates 
 In absence of focusing M562s 
 Defocusing reduces M56  

 Adjust dispersion and dispersion prime to make desired value of 
partial slip-factor, 56M̂  
 That determines the ratio of damping rates 

and the cooling range in momentum 
 Adjust beta-function through the chicane to minimize sample 

lengthening from pickup to kicker 
 For optics symmetrical relative to the chicane center the optimum is 

achieved when * is minimum in the center 
 Larger value at the ends yields larger range of horizontal damping 

 Adjust focusing outside of chicane to minimize beam sizes in 
undulators 

  If necessary iterate to achieve desired parameters 


