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Atmospheric 
Neutrinos at MINOS

Caius Howcroft, Caltech. 
FNAL JETP Seminar, 19/Aug/2005

Overview:
i.   Atmospheric Neutrinos 
ii.  MINOS overview and goals
iii. Types of atmospheric neutrino analyses 
at MINOS
iv. ν induced μ analysis
v.  Contained vertex analysis



2Caius Howcroft

The MINOS Collaboration

Argonne • Athens • Benedictine• Brookhaven • Caltech • Cambridge • Campinas • Dubna • 
Fermilab • College de France • Harvard • Illinois Inst. of Technology • Indiana • ITEP-
Moscow • Lebedev • Livermore • Minnesota-Twin Cities • Minnesota-Duluth • Oxford • 
Pittsburgh • Protvino • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • 

Texas A&M  • Texas-Austin • Tufts • University College London • Western Washington • 
William&Mary • Wisconsin



3Caius Howcroft

Atmospheric Neutrinos
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In general, atmospheric neutrino  
experiments study the νµ flux as a 
function of zenith angle (or path 
length L) and neutrino energy.

In the absence of neutrino 
oscillations, would expect flux to be 
~same in all directions.
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Atmospheric ν Experiments
• First hint of atmospheric neutrino oscillations from IMB 

then Kamiokande

• Currently most constraining measurement of oscillation 
parameters from Super-Kamiokande 

• Confirmed by Soudan 2 and MACRO
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Current SK best fit:

sin22θ = 1.0, Δm2
23=0.0024 eV2

 νμ↔ντ OSCILLATIONS

P (νµ → ντ ) = sin2 2θ sin2(∆m2

23L/4E)
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Principle MINOS Physics 
Goals

• Demonstrate the oscillation behaviour using an accelerator 
based experiment.

• Measure Δm

• Search for sub dominate ν appearance 

• Observe charge separated atmospheric neutrinos 

2
23

e

Provide very high statistics discrimination against other models for  
νμ disappearance , e.g. decoherence, neutrino decay, ...? 

to better than 10%

θ13 3σ discovery limit is factor 2 improvement on CHOOZ 
current limit.

This talk!
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MINOS Basic Idea

Position of 
minimum
      Δm2

Depth of 
minimum
      sin22θNear

(unosc)

Far
(oscillated)

νµ beam: 

   120 GeV protons from  FNAL Main Injector 

2 detectors:

   `Near’ detector, FNAL, IL: unoscillated spectrum  

    `Far’ detector Soudan , MN (735km away): measure oscillated neutrino 
energy spectrum

735 km
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Soudan, Mn
`Far' detector

FNAL, IL
Beam Production 
& `Near' detector
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MINOS Far Detector Site

• Located in former iron mine 
in northern Mn, USA.

• Also the home of Soudan1&2 
(ret.) and CDMS II.

• MINOS is 2341 ft. (2070 mwe) 
below the surface.

MINOS

Soudan 2/CDMS II
shaft

To FNAL



9Caius Howcroft

The Far Detector
• 8m octagonal steel scintillator 

tracking calorimeter.

• Divided into two 15m sections 
(supermodules)

• Each supermodule has a 1.5T 
toroidal magnetic field

• 5.4 kton total mass

• Hadronic energy resolution 
~55%/√E

• Muon momentum resolution 
~7% (range), ~20% (curve)

• Active Veto shield to tag cosmic 
ray muons.

• Completed in Aug 2003.

A single supermodule
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Detector Readout
• Steel-Scintillator sandwich, each layer (or plane) consists of a 

2.54 cm steel +1 cm  scintillator

• Each scintillator plane divided into 192 x 4.1cm wide strips

• Scintillation light collected by WLS fibres glued into each 
strip and read out by multi-pixel PMTs 

• Alternate planes have orthogonal strip orientations, U and V 
⇒ 3D tracking
U V U V U V U V

steel

scintillator

orthogonal 
orientations  
of strips
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The Far Detector

During construction.

v u
y

x

Completed 

Coil 

Veto shield

Optical  readout

Scintillator 

Supermodule boundary
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Event Information

DATA

UZ

VZ

Timing/Z

➪ Two Views (UZ and VZ) are combined to give 3D tracks and showers.
➪ Event timing information 
➪ Calorimeteric information
➪ Event charge and muon momentum from curvature of tracks in B-field.
➪ Active veto shield tags incoming particles.

Calorimetric

Veto hits
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FarDet Beam Data Event

Calorimetric

Timing / Z  

V / Z  

U / Z  
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Atmospheric Data
• Since completion in August 2003 the 

Far Det has been taking cosmics 
data.

• Beam switched on 1st March 2005 
at which point the Far Detector had 
collected 420 days of physics quality 
data, excellent for a detector still in 
commissioning stage.

• Total of 6.18 kton-years of data 
suitable for atmospheric neutrino 
studies, c.f. Soudan 2's 7.36 kton-
years.

• Will still take cosmics data during 
beam running. 

Days since 2003-07-01
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Atmos ν Pros and Cons
• MINOS Far Detector has a lot going for it:

• Deep (2070 mwe), giving 100,000:1 reduction in cosmic 
muon rate.

• Magnetic field giving information about:
• muon charge ⇒ ν ν separation 

• muon momentum, even for muons that leave the 
detector ⇒ neutrino energy for all events

• The challenge, 

• 80% of the detector surface  is uninstrumented. 

Event appears to start 
1m from detector edge

Hit in Veto
Shieldcosmic ray μ

_
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Event Classes & Backgrounds
ν

µ

ν

µ

ν

µ

ν

µ

Fully Contained 

Partially  Contained
Downward-going 

Partially  Contained
upward-going 

neutrino induced 
rock muon

FC

PCDN

PCUP

νinducedµ

Sneaky Stopping 
Cosmic Muons 

Sneaky Thru-going 
Cosmic Muons 

Stopping
Cosmic Muons 
(Reco Direction 
Wrong)

Thru-going  
Cosmic Muons 
(Reco Direction 
wrong)

Cut: Containment, 
topology, veto

Cut: Containment, 
topology, Veto

Cut: timing

Cut: containment 
timing

Contained
Vertex
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Neutrino Induced Muons
• Look for events coming from below the horizon. The flat 

overburden at Soudan means can also look for events 
slightly above horizon. 

• Event selection is based on event timing, timing resolution 
2.4ns per channel. Require 20 planes and 2m tracks, look at 
event timing 1/β (c/v).

Downward going 
cosmic ray muons

Candidate upward 
going events
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Example Event

Calorimetric

Timing / Z  

V / Z  

U / Z  

• Timing clearly identifies this as an upward going event.

• Curvature of track in magnetic field identifies this event as 
a μ+.
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Neutrino Induced Muon 
Results 

NUANCE Monte Carlo:
 ✦Bartol'96 flux 
 ✦MC (no oscil) 
normalised to data 

• Select 91 events.

• Currently not enough 
statistics to make statement 
about oscillation parameters 
based on neutrino induced 
muons alone.

• This analysis is a work in 
progress. 
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Contained Vertex Analysis
• The contained vertex analysis is concerned with the FC, 

PCDN and PCUP events classes.

• FC and PCDN share backgrounds (sneaky cosmic ray 
muons) ⇒ Use same event selection

• PCUP very different 

• Major background due to incorrect track direction reco.

• Unable to use the veto shield

• Use signal and cosmic ray muon MC (Barr '04 flux) to 
develop a cuts based selection.

• Present results based on 6.18 kton-years of data. Results to 
be submitted any day.
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FC PC-Down Selection

• FC and PC-Down have same background: sneaky cosmic 
muons. Therefore, use same cuts.

• Rejection factor of 1 in 107 required to achieve a signal to 
background ratio of 10:1.

• Use cuts based on containment and event topology  to 
reduce signal:background to ~1:1, then apply veto shield 
(~97% efficient).

• Use independently measured veto shield efficiency to 
measure remaining background in sample.
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FC/PCDN:Containment

• Define a fiducial volume:

• 0.5m from detector edge

• 5 planes from each 
supermodule end

• Cuts:

• FC - require both ends be 
'contained'

• PCDN - require upper end 
'contained' and lower end 
non-contained. 

Fiducial Distance / m 
0 0.5 1 1.5 2 2.5 3 3.5 4
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n
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Data (102 livedays)

Cosmic Muon MC

 1000!CC MC 
µ
"

Muons entering through 
coil hole. Removed with 
40cm radial cut.

Signal:Cosmic ~ 1:300

MINOS PRELIMINARY 
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FC/PCDN Topology Cut
• Background dominated by steep cosmic ray muons entering 

between the planes, "sneakers". 
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FC/PCDN Topology cut

• Remaining background is steep, highly curving cosmic ray 
muons

|z!|cos

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 /
 P

E
v
tx

Q

0

50

100

150

200

250

300

"MC atmos 

|z!|cos

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 /
 P

E
v
tx

Q

0

50

100

150

200

250

300

µMC cosmic 

zenith
!cos

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 /
 P

E
v
tx

Q

0

50

100

150

200

250

300

"MC atmos 

zenith
!cos

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 /
 P

E
v
tx

Q

0

50

100

150

200

250

300

µMC cosmic 

z

y (zenith)

Signal:Cosmic ~ 1:1.5

Signal Background
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The Veto Shield
• Same scintillator strips used in detector, but parallel to Z axis. 4 

sections (2 per supermodule) each 8 meters long.

• Event is 'vetoed' if energy is deposited in the shield within 100ns of 
the event.

• Measure cosmic ray muon rejection efficiency using stopping 
muons: 97.1±0.1(sys) %

• Signal rejection inefficiency 2.5±0.2(sys)%

X

Y

UV

Z out of page

WestEast

B-Field

Coil hole

Shield Layer
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Applying the Veto Shield
• Applying veto shield: 

• Know veto shield efficiency and number of vetoed events, 
therefore can estimate cosmic ray muon background in 
selected sample.

Measured Cosmic Muon  
BG

MC Cosmic Muon BG

Events 4.4±0.4(stat)±0.3(sys) 4.9±0.7(sys)

Data
Total MC  

(no oscillations)
Total MC

(Δm2=0.0024eV2)
Total 94 110±11 87±9

PCDN 25 20±2 19±2

FC 69 90±9 68±7
MC  predictions include all backgrounds
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Partially Contained Up (PCUP)
• Very different backgrounds to FC/PCDN. Stopping cosmic 

ray muons with incorrect direction from timing, therefore 
timing cuts do the work here.

Signal:BG ~ 1:15

Stopping cosmic ray muon
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PCUP:Timing 
• Direction of track is determined from timing of hits along 

its length. Single hit resolution 2.4 ns.

• The RMS of the hits times about the track is calculated for 
the two hypotheses of +c or -c. The hypothesis with 
smallest RMS is selected as track direction.

+c hypothesis

-c hypothesis
hit time

distance 
along track

Hits along track

Track Length/Planes
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MINOS

Data
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Stopping cosmic ray muons direction 
Reco Efficiency 

Excellent (~1%)data/MC 
agreement
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PCUP:Timing
• Use difference in RMS to select events with unambiguous 

direction

• Remaining background is estimated from high statistics 
Monte Carlo studies <0.36 (68% c.f.).  

Data
Total MC

(no oscillations)
Total MC

(0.0024eV2)
Events 13 17.6±1.8 9.8±1.0
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Event Summary

Data
MC νµ/νµCC

no oscillations

MC νµ/νµCC

0.0024 eV2
Cosmic Muon

MC
Other 

Backgrounds

Total 107 127.1±12.7 96.2±9.5 4.9±0.7 5.1±0.35

Barr'04 flux scaled by 
Soudan2 measurement

ντCC, Rock muons 

,νeCC, Neutral 

Current, Neutrons

★ Using Soudan 2's νe data to normalise has two advantages:
a) Soudan 2 is iron, like MINOS
b) It is located in the same place

★ Recent analysis of Soudan 2 data suggests that Barr'04 should be scaled by 
0.88±0.07(stat).
★ An additional 5% systematic uncertainty due to different energy thresholds 

and 2.5% due to different points in the solar cycle.  

★ Total 10% systematic uncertainty is used for neutrino flux.
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Example Events

FC PCDN

PCUP
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Event Distributions 
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Event Direction
• Define a 'high resolution' sample of FC events, by applying 

similar timing cuts to PCUP.

• Place events that fail into a 'low resolution' sample. These 
events have  ambiguous direction.

Correct Track Direction
Before Cut = 96.0 %
After Cut   = 99.9 %

FC events

Data
Total MC  

(no oscillations)
Total MC

(Δm2=0.0024eV2)
Good timing 77 90.3±9.0 68.3±6.8

Low res 30 36.9±3.7 27.9±2.8

Total 107 127.1±12.7 96.2±9.5
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Up/Down Ratio

• Calculate the up-down ratio (Robs) and compare it to MC 
expectation in the absence of oscillations (RMC).

• Only used events that have unambiguous direction from 
timing, 77 out of 107 events.

MINOS PRELIMINARY 
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Rdata
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up/down = 0.62 ± 0.14(stat.) ± 0.02(sys.)
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Oscillation Analysis
• MINOS Far Det is unique: can measure E=Eμ+Ehad for both FC and 

PC events.

• Not all events carry the same amount of information about 
oscillation  parameters:

• All 107 events can be used for normalisation

• 77 events have good direction from timing, contain information 
about up/down ratio.

• These 77 events have very different L/E resolutions, resolution 
is degraded for:
• Events near the horizon (large dL/dθ)

• Low Energy/High y (opening angle)

• PC events with large error on pμ.

• Event-by-event resolution in L/E (σL/E) calculated.

• Bin data in terms of L/E and σL/E.

y = 1 - Eμ/Eν
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L/E distributions
• For each event determine the measured L/E

• Fit in 10 bins of σ and bins 0.2 wide in log10(L/E).

June 13th 2005 Ely Mark Thomson, Cambridge 17

Oscillation Fit

!For each event determine measured log(L/E) from:
• L : measured muon direction (assume h=20 km)
• E! = E" + Ehad

! fit in 10 bins of 
L/E resolution

! For fit to shape only
include PC events if
some evidence of 
curvature : 

|Q/p|/#(Q/p) > 1

L = measured muon direction
E = total reconstructed energy

MC no oscillations

MC best fit oscillations 

Data
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Likelihood
• Out of the 107 selected events:

• 77 have good direction (direction from timing unambiguous)

• 67 have well measured pμ, either from range or curvature fit.

• Fit independently:

• Normalisation (all 107 events)

• Up-down ratio binned in resolution (77 events)

• Upward and downward going L/E shapes (67 events)

Normalisation

Up-Down ratio summed over bins of σ 

Separate shapes of upward and downward 
going events

Penalty function for systematic errors, 
treated as nuisance parameters. 
Likelihood min wrt to these at each point 
in parameter space.
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Systematic Uncertainties
• Systematic Uncertainties included in the fit:

• 10% normalisation uncertainty 

• 3% up down ratio (from selection uncertainties) 

• Uncertainties in flux spectrum  shape to cover the 
differences in different neutrino flux models

• Neutrino x-sections: allow the QE contribution to vary 
by ±20%.

• 3% momentum scale

• 5% hadronic scale
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Fit Results

10
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0 0.2 0.4 0.6 0.8 1
sin22θ

∆m
2  (e

V
2 ) 1

68 % C.L.
90 % C.L.
-∆lnL=2.3
Best fit

MINOS Preliminary

90% C.L. obtained by:
  a) Feldman and Cousins approach
  b) -lnL = 2.3
  
Best fit point 

sin
2
2θ = 0.90, ∆m2

23 = 0.0013 eV
2

Consistent with a wide range of 
oscillation parameters including SK and 
K2K.

Null oscillation hypothesis disfavoured at 
98% confidence.

Quality of the fit is good. For 10000 
simulated experiments with 
(Δm2

23=0.0024 eV2, sin22θ =1.0) 84% 
experiments min -lnL exceeded that of 
the data.
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MINOS Charge Separation
• Ability to separate charge depends on:

• muon momentum

• track length

• vxB

• Measure charge from curvature of track in magnetic field, 
giving Q/P.  Error in fit (σQ/P) is also estimated. 

• To get clean charge separation require that |Q/P|/ σQ/P > 2.0

Q/P
!Q/P/

-20 -15 -10 -5 0 5 10 15 20
0

5000

10000

15000

20000

25000

Data

+µMC 

-µMC 

+µ+ 
-µMC 

Stopping cosmic ray muons

μ- μ+

MINOS 
PRELIMINARY 

Excellent data/MC 
agreement
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Charge of Selected Events
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Data
Total MC  
(no osc)

Total MC

(0.0024eV2)

νμ 34 42±4 31±3

νμ 18 23±2 17±2

νμ/νμ ? 25 26±3 20±3

Low res 30 37±4 28±3

_

_

• Only use events where direction from timing is 
unambiguous. 

• Require |Q/P|/ σQ/P > 2.0, gives a charge purity (from MC) of 
98.7%

• Observe 34 νμ and 18 νμ events, measured νμ fraction 
(Rdata) 0.35, expected νμ fraction (Rmc) 0.36.

Rdata
ν̄µ/(ν̄µ+νµ)/RMC

ν̄µ/(ν̄µ+νµ) = 0.98 ± 0.19(stat.) ± 0.06(sys.)

_ _

Barr '04 flux/ NEUGEN 3



42Caius Howcroft

Q Separated Up-Down 
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• The data are consistent with the same oscillation 
parameters for neutrinos and anti-neutrinos however...

• statistics too low to exclude large values  of Δm2
23 for anti-

neutrinos.
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Summary

• MINOS has collected 6.18 kton-years of cosmic data before 
beam switch on in March 2005.

• Have observed a total of 198 atmospheric neutrino events, 
107 contained vertex and 91 upward-going muons. 

• Contained event up-down ratio excludes no oscillations to 
2.6σ,

• Contained events can be charge identified with 98% purity. 

•  

• Not enough statistics yet to make any statement  about 
charge separated oscillation parameters. 

Acknowledgements:  A. Blake,  J. Chapman, B. Rebel and M. Thomson

Rdata
ν̄µ/(ν̄µ+νµ)/RMC

ν̄µ/(ν̄µ+νµ) = 0.98 ± 0.19(stat.) ± 0.06(sys.)

Rdata
up/down/RMC

up/down = 0.62 ± 0.14(stat.) ± 0.02(sys.)
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Backup slides
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Timing simulation
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Fit breakdown

total

up-down

normalisation

up - shape

down -shape
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