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Proton-antiproton collider:
Vs =1.96 TeV.

36 36 bunches. collisions
every 396 ns.

Record nstantaneous peak
luminosity:

290 - 103 em 2 5L,

Luminosity goal:

5.5 - 6.5 fb! of integrated
luminosity by 2009, running
in 2010 currently under
discussion.

Two multi-purpose
detectors: CDF and DO.
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Tevatron Performance

«  Tevatron continues to perform very well:
—  More than 3.8 fb™! delivered.
—  More than 3.1 fb™! recorded by CDF.
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Tevatron Performance
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Tevatron continues to perform very well:
—  More than 3.8 fb™! delivered.
—  More than 3.1 fb™! recorded by CDF.
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The CDF II Detector

Central Muon Detector )

Hadronic Wall Calorimeter

Forward Muon Detector

Antipf
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Central Outer Tra‘cker)

Silicon Vertex
Detectors
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Outline

Top Quark Physics

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 6



Top Quark History

« CDF and DO Run I announced the top quark
discovery March, 1995.

TOP TURNS TEN

TO. Aeniversary -:}"..I'Z!.z '_.";_‘T.! Leark Discovery

»  This discovery did not ““just happen™ | : " <7 1Y
— Other experiments had been looking for ' | ‘
the previous 20 years with no (real) top
quark discovery.
« PETRA (DESY): e*e e i
* SppS (CERN):  pp Wl
« LEPI(CERN): e'e s oy O
— Run I was 1n its fourth vear (after three - :
years of Run 0 and many vears of
designing, building, and commissioning
the detectors).
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A Quick Note About Scale

Cross Sections at Vs = 1.96 TeV

i

For those not

o o § Total inelastic
intimately familiar < 107
2
with Tevatron 5 gt mb o
7 6-10°
high p.. Physics: 2
S Pr A ©10° L b
| 0.3 W 4000
Top: b > 400
. ceae -10
1 in 10 Billion 10 i

: » o ° aly g i () v
Reducing and understanding g Higgs (ZH + WH)

S ' i - fb
backgrounds 1s the key. 16
100 120 140 160 180 200
Higgs mass (GeV)/c
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Top Quark Review

Top: the quark ( ~ 175 GeV/¢?)
— Only fermion with mass near EW scale. tt Pair Lepton + Jets Decay
— 40 times heavier than the bottom quark.

«  Verywide (1.5 GeV/c?) v

— The top quarks decay before they can
hadronize. lep
« We can study the decay of the bare
quark.
« Usually observed 1n pairs.

* Fundamental question:

Is 1t the truth, the Standard Model (SM)
truth, and nothing but the truth?

— Did we really find the top quark?
— Is 1t the SM top quark?
— Is 1t only the SM top quark?

* The top quark 1s an 1deal place to look for
Bevond the Standard Model Physics!
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CDF and DO now have more than
thirty (30 !!!) times as much
integrated luminosity as we did when

they discovered the top quark n %
Run I! g 1 50}
S8
With the data we have recorded. we 100
are now able to have large. very pure
top samples. 50
Of the almost 50 results that CDF 0

sent to the winter conferences. more
than half were 1n top physics!

Charles Plager

New Era of Top Precision Physics!
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Branching ratios
Rare decays
Non-SM decavs
Decay kinematics
W helicity

<]

‘\-tb‘

Top charge
Top spin
Top lifetime

Top mass
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Branching ratios
Rare decays
Non-SM decavs
Decay kinematics
W helicity

What Can We Study About Top Quarks?

<]

Top physics
1s very rich.

‘\-tb‘

Top charge
Top spin
Top lifetime
Top mass

Charles Plager
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Top Pair Decay Modes

* According to the SM, top quarks almost (?) tt decay modes
always decay to Wb.

*  When classifving the decay modes. we use

the W decav modes: :
- all hadronic

— Leptonic
» Light leptons (e or p) W
» Tauonic (7)
— Hadrons
gt T Lot ud I cs
Branching Relative Final +
Decay Mode Fraction  Background State L
Dilepton - no Ts ~ 5% Low ¢¢ vv bb
Lepton + Jets - no Ts ~ 30% Medium £ v bbjj
All Hadronic ~ 45% High bb jji
Tauonic ~ 20% High
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« For many analyses, we need a very
pure set of high p; electrons and muons.

* Electrons (as we reconstruct them):
— Have charged particle track.

— Leave almost all of their energy
in the electromagnetic calorimeter.

— Ask for no other nearby tracks.

* We do not want leptons from
(heavy flavor) jets.

e  MNuons:

— Have charged particle track.

Important Tool: Lepton ID

photons

et
—>

muons
— >

K*,2%, p

r—

n

—

Innermost Layer...

Muon

Tracking Electromagnetic Hadron
charmber

chamber calorimeter calorimeter

P» ...Qutermost Layer

— ~Minimum 1omzing (leave little energy 1n either the electromagnetic or hadronic

calorimeter)

— Find a “*stub™ of a track in dedicated muon detector systems on outside of CDF.

— Ask for no other nearby tracks.

Charles Plager
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We think of partons. but we

reconstruct jers.
proton
g 9
q
antiproton

We need to convert “raw™ jets to

“corrected’ jets -

Jet Energy Scale (JES) correction.

m
w+* v
t
b
. b
t
wW- q
q

out of cone

— Takes into account detector particle

effects. neutral particles in jets.
particles outside of the jet cone.
underlying events, multiple

interactions, ...

Charles Plager
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Important Tool: B Jet Tagging

* Since we (often) expect t - W b, CDF Event:
b jet tagging 1s a very important tool.  Close-up View of Layer 00 Silicon Detector
Most bac-kgrﬂllﬂds dO not ha\-"e Run 178855 mumberg{JL:tg G4V
I1S8In e
) T f
w~ Vv
proton
{

g g )

/ . b

q t

antiproton b, - q ..
a } \'. ) ."'." _._;':
jet N *MET
+  We rely on the long b quark lifetime. VA St —Z
B hadrons can travel several | il
millimeters before decaying. L el ?: H'Gﬁﬁj" el
Use displaced vertices or many
displaced tracks (1mpact parameter).
(Charles Plagcer Fermilab Wine and Cheese, Apnl 4, 2008 Page 15
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The Big Bang Theory!

Mondays at 7:00 on CBS.
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Top Physics Finally Makes Prime Time

The Big Bang Theory! l““ |
Mondays at 7:00 on CBS. . Al -.‘ﬁ
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Outline

The Search for Top FCNC Decay
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Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Backgrounds

Unblinding

Round 2

ACceptances
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Top FCNC Outline

The Search for Top FCNC Decay

Introduction
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Flavor Changing Neutral Currents

*  Flavor changing neutral current (FCNC) interactions:
e  Transition from a quark of flavor A and charge Q to quark of flavor B with the

same charge Q. Flav ,
+  Examples: b — sy, t — He, ... avor  ( g
Changing
*  1960s: only three light quarks (u,d,s) known, Neutral Y.9,£,H
mystery in kaon system: Current
: A _
d T v
ol 10¢ times M
KO u Vu smaller - -
| -
than...? W
S - - u +
W+ IJ' M

. Solution: “GIM Mechanism™ (Glashow, Iliopoulos, Maiani, 1970)
*  Fourth quark needed for cancellation in box diagram: prediction of charm quark.

«  Cancellation would be exact if all quarks had the same mass: estimate of charm
quark mass.
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Generic

SM Higgs mechanism: weak neutral currents (NC)

do not change the flavor of quarks/leptons (“tlavor- FCNC
diagonal™) " =
= no FCNC at “tree level.” ’
FCNC possible e.g. via penguin diagrams. v/Z

—  GIM mechamsm

Penguin
— Cabibbo suppression .
Diagram
Expected SM branching fraction (Br) for t — Zc as t X c.u
small as 10714, W
Any signal at the Tevatron or LHC: New Physics, b 5.
viZ

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 20




« FCNC are enhanced in many models of
* & 4
physics beyond the SM.

* Enhancement mechanisms:
—  FCNC interactions at tree level.
—  Weaker GIM cancellation by new
particles 1in loop corrections.
» Examples:
—  New quark singlets: Z couplings
not flavor-diagonal — tree level

Top FCNC & New Physics

7

t

FCNC. f
—  Two Higgs doublet models:

modified Higgs mechanism.

Flavor changing Higgs
couplings allowed at tree
level.

«  Virtual Higgs in loop
corrections.

—  Supersymmetry: gluino/neutralino
and squark 1n loop corrections.

Model BR(: — Zg)
Standard Model (10714

g =2/3 Quark Singlet ~ £(107%)
Two Higgs Doublets o(1077)
MSSM 6(1079)
R-Parity violating SUSY &(1079)

[after J.A. Aguilar-Saavedra,
Acta Phys. Polor B35 (2004) 2695]
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Top FCNC & New Physics

« FCNC are enhanced in many models of i
physics beyond the SM.

t H? C,u

* Enhancement mechanisms:
—  FCNC interactions at tree level.
—  Weaker GIM cancellation by new
particles 1in loop corrections.
» Examples:

—  New quark singlets: Z couplings
not flavor-diagonal — tree level

FENC. f Model BR(t — Zg)
_}

—  Two Higgs doublet models: — e
modified Higgs mechanism. Standard Model o(1077)
Flavor changing Higgs g =2/3 Quark Singlet ~ £(10™")

c-otu lin ﬁ'.t ‘-lli)“i‘d f-lgtgé;ee Two Higgs Doublets o(107")
le.\-eli g8 atlowet at tree MSSM 6(1079)
. R-Parity violating SUSY &£/(107°)
«  Virtual Higgs in loop
corrections. [after J.A. Aguilar-Saavedra,
. . . Acta Phys. Polor B35 (2004) 2693]
—  Supersymmetry: gluino/neutralino

and squark 1n loop corrections.
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Previous Limits

« RunlI Search: e Limit from LEP I1
— 110 pb! of data — search for single top production:
— tt — Zc Wb — Z+-4; efe—te
— Limit: Br (t — Z¢) < 33% at 95% C.L.
e t
/ f}!*f/z'* \
et C
— 634 pb!
— Limut: Br (t — Zc¢) < 13.7% at 95%
C.L.

= Best limit so far with Z: bosons.

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 22



« Basic question: how often do top
quarks decay into Z¢?
—  Measure (or set limit) on
branching fraction, Br (t — Zc¢).
— Normalize to lepton + jets
top pair decays.

« Selection of decay channels for

tt — Zc Wb:

— Z — charged leptons: very clean
signature, lepton trigger.

— W — hadrons: large branching
fractions, no neutrinos .
= Event can be fully
reconstructed

— Final signature: Z + 4 jets.

Charles Plager

Top FCNC Search: Roadmap

Z Decay Modes:

Z — VWV
® Z-eelyp
® Z-1m
® Z — hadrons

207

W Decay Modes:
® Wy
® W-r1v
® W — hadrons, €47
S
Page 23
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Search for FCNC: Ingredients

q

W_ Two quark jets form
c_:I, W boson

p—b—(F B . 4
g t
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Search for FCNC: Ingredients

g

W_ Two quark jets form
c_:I, W boson

p_._(F A
q R 1+ 1

Jet trom b quark, can
be combined with W

to form top quark
>

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 24




Search for FCNC: Ingredients

g

W_ Two quark jets form

c_:I, W boson

p _,_(F A
q 'F‘ \\\\\ 1"\. n‘iﬁ“"lf al -

TD - Fa b et =
JGU LU U Ludl i, bdld

1+
L
be combined with W

to form top quark
>

I_ Two leptons (ee or

i) with opposite
n charge, form
I Z boson
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Search for FCNC: Ingredients

g

W_ Two quark jets form
S W boson

q
p_._(Fq_ A

'F“i“" \\\\\ 1"‘\. ﬂ‘i“"'lf

TD Fa b et =
JGU LU U Ludl i, bdld

1+
L
be combined with W

to form top quark
>

Additional jet, can be
combined with leptons
to form top quark

|~  Two leptons (e or
i) with opposite

n charge, form
I Z boson
J
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2
%mass reconstruction
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2
%mass reconstruction

2
MW recon — My
Ow

=
<l 2
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2
%mass reconstruction

( MW recon

/ Mzl
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2

%mass reconstruction

( MW recon

p_._F ~ n /H’I i/ L
q t

VP W D TECOI

=
<l 2

Orwb

Mt7Zc recon —

O:7c
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Mass 2

« We do not know which partons are reconstructed as which jets.

= Loop over all 12 permutations and take lowest %> value.

X2 Shapes: Signal and Background

LI Ll L] l L} Li L I i L L I L L) L) 'I L) L] ¥

-~ FCNC Signal -

[] Z+Jets 2
C1Z GEH ets
] Z bb+Jets

B SM tt
B Diboson

0.15

Illlllllllllll

0.05

Normalized to Unit Area
D
b—
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Mass 2

« We do not know which partons are reconstructed as which jets.

= Loop over all 12 permutations and take lowest %> value.

X2 Shapes: Signal and Background

0.05

g N L) L] T l L] :' L] I L) L) L] I L] L] L] 'I L] L L] -
— - . -~ FCNC Signal -
j‘:_‘ C E [ Z+Jets )
= 015 : [ Z c+lets
= i [ Z bb+Jets |
= : : I SM tt N
’8 0.1} B Diboson —
N [

= i

E =

e

@)

Z

0o 2 L 6 s 70
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Signal-like Background-like X
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Mass 2

« We do not know which partons are reconstructed as which jets.

= Loop over all 12 permutations and take lowest %> value.

X2 Shapes: Signal and Background

0.05 High side tail of ¥~

g N L) L] T l L] :' L] I L) L) L] I L] L] L] 'I L] L L] -
— - . -~ FCNC Signal -
j‘:_‘ C E [ Z+Jets )
= 015 : [ Z c+lets
= i [ Z bb+Jets |
= : : I SM tt N
’8 0.1} B Diboson —
N [

= i

E =

e

@)

Z

0o 2 L 6 s 70
A— ———

.. : . A/ x2
Signal-like Background-like X
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Top Mass Reconstruction

« For our signal, we have three t = Wb mass
hadronic masses to reconstruct: width
— W mass 20 GeV = 16 GeV!

— t — Wb mass
— t— Z ¢ mass
Signal MC with partons correctly matched

to reconstructed objects.

 To improve resolution, we correct the ]
P 5000|—
W and Z daughters so that the masses B
are correct. 40001
- —— Corrected W Mass
— Rescale the daughters within [
. . 3000 """ Uncorrected W Mass
their resolutions. N
—  Smaller mass resolution 2000F
= Better signal separation. -
1000
.0_ | e 1 L1 1 - i
0 50 100 150 200 250 300
Top Reconstructed Mass (GeV)
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Charles Plager

Round 1: Blind Analysis

Fermilab Wine and Cheese, Apnl 4, 2008

« Event signature: Z — 171" + 4 jets.

« Motivation for blind analysis: Avoid biases by
looking 1nto the data too early.

« Blinding & unblinding strategy:

Initial blinded region: Z + = 4 jets.

Later: add control region in Z + = 4 jets from
high side tail of mass x-.

Optimization of analysis on data control
regions and Monte Carlo (MC) simulation
only.

Very last step: “opening the box™,

i.e., look 1nto signal region 1n data.
Counting experiment:

= Compared expected background to
observed events.
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Top FCNC Outline

The Search for Top FCNC Decay
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Lepton + Track Z Candidates

n-¢ Coverage: Electrons n-¢ Coverage: Muons

e T F TR

= = [ i

o = i i

5D 5D i i
o o

= = i |

< < L i

1 / 5 W 1 -I PR I T T T o SR it ) PR T 1-

0 -2 -1 0 1 2 0 -2 -1 0 1 2
Pseudorapidity n — T1oht L'SptDIIS Pseudorapidity n

e Use 1solated track (1nstead of tight lepton) for second lepton.
— Doubles acceptance.

— Almost all backgrounds have real leptons.

* Base Event Selection:
— Tight lepton + track lepton Z candidate.

— At least four jets (|1 = 2.4, corrected E. 15 GeV).
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Lepton + Track Z Candidates

n-¢ Coverage: Electrons n-¢ Coverage: Muons
T SF . T F AR
= i : oy - !
o i : 9 i i
=11} | o =11 B =
2 4 - <t -
] <]
= - ' = - [
= =
E [ ' B - y
B - e N - .
< L y < L N
ﬁ 1 PRI N T T I B R
03 2
Pseudorapidity n — T1oht L'SptDIIS Pseudorapidity n
— Track Leptons
e Use 1solated track (1nstead of tight lepton) for second lepton.
— Doubles acceptance.
— Almost all backgrounds have real leptons.
« Base Event Selection:
— Tight lepton + track lepton Z candidate.
— At least four jets (|1 = 2.4, corrected E. 15 GeV).
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To B or not to B ?

* Advantage of requiring b-tag:
= Better discrimination against main
background (Z + jets).

e Disadvantage:

= Reduction of data sample size. Before | At least

Sample | tagging | 1 b-tag
Background 130 20
(100%) (15%)

Relative
Signal Acceptance 100% 50%
Charles Plager Fermilab Wine and Cheese, April 4, 2008 Page 3



ToB

* Advantage of requiring b-tag:
= Better discrimination against main
background (Z + jets).
e Disadvantage:

= Reduction of data sample size.

* Solution: Use both!

—  Split sample 1n fagged (at least one
tagged jet) and anti-tagged (no tagged
jets).

—  Optinize cuts individually for tagged
and anti-tagged samples.

—  Combine samples 1n limit calculation.

or not to B

Before | At least
Sample | tagging | 1 b-tag
Background 130 20
(100%) (15%)
Relative
Signal Acceptance 100% 50%
Page 3
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Mgl = [(PUF— WHZC) - dhyz) + (P(F — ZeZe) - oyz)] - O3 /,zdr
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Mgl = [(PUF— WHZc) - dhyz) + (P(F — ZeZe) - oyz)] - O /,zdr

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 32



Acceptance Calculation: Catch 227

Mgl = [(PUF— WHZc) - dhyz) + (P(F — ZeZe) - oyz)] - O /Ea’r

- _ _ (AN —B
— h(e@(ft — WbZC) ‘MWZ) + (:@(ﬁ — ZCZC) -,,Qf/zz) ﬁj fﬁi}r{ /ﬁdt
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Acceptance Calculation: Catch 227

Mgl = [(PUF— WhZc) - chyy) +(P(tf — ZeZe) - otyz)] - 6 ] Zdi

| ) ) (AN —B '
= [(LP(tt = WbZc)- etyz)+ (P (tft — ZcZc) - zz7)) - ﬁjylér //%
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Acceptance Calculation: Catch 227

Nignat = [(P(tf = WbZc) - 2hyz)+ (P (tf — ZcZc) - 77)] - 6, /,ﬁdr
: _ _ (AN —B
= [(P(tF — WbZc)- diyz) + (P(tF — ZcZc) - atyz)] -~ L)
Ly
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Acceptance Calculation: Catch 227

J%ignal = (@(tf—:, WbZC) -ﬂwz) = (@(ff% ZCZC) -.ﬁzz): - G;f'fgdf

. (S —Buy)
i ﬂfu

= [(L(tt > WbZc) - hyz)+ (P (tt — ZcZc) - 77)
Br (t—=>Wb)= 92% Br(t—=>Zc)= 8%

B P(t—>WbWb) = 84.64%
M P(t—>Wb Zc)= 13.12%

LI P(t—>Zc Ze)=  0.64%
Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 32



Solution: Running Acceptance

c/%igna] o [(@(If — WbZC) : =§<2f/w’;z) = (@(ff—i' ZCZC) . ,Qf(zz)] . O';f(@g) . /ﬁﬁﬂdt‘
. 1/2 page of algebra ...
= By(Ny—Bu) Az (2'(1—@2)"‘1{22/1&!2'@2)
— - — : :
U = belew (1 _@2)2_;_2.992(1 _@Z)'f—@wﬂww"‘-—@%'%zszw
Acc.
L+7J yield Ratio “Running” Acceptance Correction

* Acceptance and G, depend on %y .

] o P$By; = Br(t—Zc)=1—-Br(t — Wbh)
e  Qur limit code recalculates
f ‘ Fi hi awz = FCNC acceptance
B -l. -l. : 8 "I_ 1 B k1 8 -l. ') ‘) ‘} ad B "I_ g
?Lueptal1ue as a runction ol branching oz = Double BCNC acceptance
raction. _
‘ Frrew = L+J acceptance for SM tf
* Normalization to double-tagged top 1, = L+Jacceptance for FCNC
pair cross section measurement: olyy,, = L+Jacceptance for FCNC
— Smallest overlap ( %, ,/ww) K_zz;wz = 77/ 9Wz
between acceptances. Rwapww = DLiwe] DIww
=%zzs‘ww = =@?Jzz /Q'{*J WW
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Solution: Running Acceptance

c/%igna] o [(@(If — WbZC) : =§<2f/w’;z) = (@(ff—i' ZCZC) . ,Qf(zz)] . O';f(@g) . /ﬁﬁﬂdt‘
. 1/2 page of algebra ...
= Bz (Ny—Bu) Az (2'(1—@2)"‘1{22/1&!2'«@2)
— - — : :
U = belew (1 _@Z)2+2‘%Z(1 _%Z)'f—@wszw+@%'%zszw
Acc.
L+7J yield Ratio “Running” Acceptance Correction

« Acceptance and G, depend on %y .

] o P$By; = Br(t—Zc)=1—-Br(t — Wbh)
e  Qur limit code recalculates
f ‘ Fi hi awz = FCNC acceptance
B -l. -l. : 8 "I_ 1 B k1 8 -l. ') ‘) ‘} ad B "I_ g
?Lueptal1ue as a runction ol branching oz = Double BCNC acceptance
raction. _
‘ Frrew = L+J acceptance for SM tf
* Normalization to double-tagged top 1, = L+Jacceptance for FCNC
pair cross section measurement: olyy,, = L+Jacceptance for FCNC
— Smallest overlap ( %, ,/ww) K_zz;wz = 77/ 9Wz
between acceptances. Rwapww = DLiwe] DIww
=%zzs‘ww = =@?Jzz /Q'{*J WW
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Top FCNC Outline

The Search for Top FCNC Decay

Backgrounds

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 34



Expected Backgrounds

« How do vou search for a signal that 1s
likely not there? Understand the
background!

« Standard model processes that can

mimic Z + =4 jets signature:

— Z+lJets: Z boson production 1n
association with jets
— dominant background for top
FCNC search, most difficult to
estimate

— Standard model top pair production
— small background

—  Dibosons: WZ and ZZ diboson
production — small background

— W-lets. WW: negligible

* Top FCNC background estimate:
mixture of data driven techniques and
MC predictions

th
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Expected Backgrounds

* How do vou search for a signal that 1s
likely not there? Understand the
background!

« Standard model processes that can

mimic Z + =4 jets signature:

— Z+lJets: Z boson production 1n
association with jets
— domuinant background for top
FCNC search, most difficult to
estimate

— Standard model top pair production
— small background

— Dibosons: WZ and ZZ diboson
production — small background

— Wlets, WW: negligible

* Top FCNC background estimate:
mixture of data driven techniques and
MC predictions

ilr I. : : . I-. ’ JI |
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« How do vou search for a signal that 1s
likely not there? Understand the
background!

« Standard model processes that can

mimic Z + =4 jets signature:

— Z+lJets: Z boson production 1n
association with jets
— dominant background for top
FCNC search, most difficult to
estimate

— Standard model top pair production
— small background

—  Dibosons: WZ and ZZ diboson
production — small background

— W-lets. WW: negligible

* Top FCNC background estimate:
mixture of data driven techniques and
MC predictions

Charles Plager

Expected Backgrounds

Standard Model Top Pair Production

« Small background: no real Z, need
extra jets from gluon radiation and/or
“fake lepton.™

* Dilepton channel

(tt — Wb Wb — 1vb 1vb):

dilepton invariant mass can fall into Z
mass window.

 Lepton + Jets channel

(tt — Wb Wb — 1vb qq’b):
misreconstruct one jet as a lepton
(“fake™), invariant mass of lepton and
fake lepton can fall into Z mass window.

 Large fraction of heavy flavor jets:
more important in b-tagged samples.

» Estimated tfrom MC simulation.

Fermilab Wine and Cheese, Apnl 4, 2008 Page 35



« How do vou search for a signal that 1s
likely not there? Understand the
background!

« Standard model processes that can

mimic Z + =4 jets signature:

— Z+lJets: Z boson production 1n
association with jets
— dominant background for top
FCNC search, most difficult to
estimate

— Standard model top pair production
— small background

—  Dibosons: WZ and ZZ diboson
production — small background

— W-lets. WW: negligible

* Top FCNC background estimate:
mixture of data driven techniques and
MC predictions

Charles Plager

Expected Backgrounds

Diboson Production: WZ, Z.Z.

« Small background (similar in size to
standard model tt production).

« Small cross section but real 7.
» Need extra jets from gluon radiation.

« /7: Heavy flavor contribution from
7. —> bb decay.

» Estimated tfrom MC simulation.
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Z+Jets Production

- 2 ) T I : T : : T
« MC tool for Z+Jets: ALPGEN E CDF II Preliminary 1.12 fb-! ‘il Data
. _ = 5 MC Simulation
— Modern MC generator for g 10
multiparticle final states 10° e
— “MLM matching™ prescription to ——
remove overlap between jets from 10° Blinded
matrix element and partons showers
10°
« Comparing ALPGEN with data: .
. . 0 2 4
— Leading order generator: no absolute N i
< . umoer or JEtLs
prediction for cross section. 5
: ; i & P ] R P
— After normalization to total Z vield, S " CDF I Preliminary 1.12 fo-! | ® if;%%ﬁ”mc
still underestimates of number of g ' B Uncertainties
events with large jet multiplicities. - sk
w L
e i
* Qur strategy: only shapes of kinematic . —— Blinded
distributions from MC, normalization It
from control samples 1n data. i
— Normalize to the high side tail of mass o M I S
¥~ 1n data. 0 2 ¢
Number of Jets
Charles Placer Fernulab Wine and Cheese, Apnl 4, 2008 Page 36
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Base Selection Background Estimate

Fit to High %2 Tail

« Fit from high side of ¥ tail :
_ DE 1T Preliminary h-1
130 £ 28 total background events. SR L SR

Entries

-
—
-

1 [ I 1 I

10
« Background tagging rate:
— 5 of 31 events are tagged. : I
— Combine with data-based method 5

in lower jet bins.
= 15% £ 4% background event

tag rate. ()- PRPRRPI P— rM

0 2 - 6 8 10

1 I L] |

Selection Expected

Base Selection 13028
Base Selection (Tagged) 2046
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Optimized Signal Region Selection

« Optimized for best average expected
limt.

Kinematic Variable Optimized Cut

Z Mass € [76,106] GeV /c*

Leading Jet E7 > 40GeV .

Second Jet E7 > 30GeV Selection EXDECtEd

ghirdhj? Eg 2 ?(5) gex Anti-Tagged Selection ~ 7.7+1.8
ourth Jet E7 > e . _

Transverse Mass > 200GeV Tagged Selection 3.2+1.1

V2 < 1.6 (b-tagged)

< 1.35 (anti-tagged)

Expected Limit:
6.8% +2.9%

« Systematic uncertainties are taken into
account, but do not affect limit very

strongly.
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Top FCNC Outline

The Search for Top FCNC Decay

Unblinding

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 39



First Look

» Before we unblind the signal regions. we want to check our base

predictions:
Selection Observed Expected
Base Selection 141 130428
Base Selection (Tagged) 17 2016
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First Look

» Before we unblind the signal regions. we want to check our base

predictions:
Selection Observed Expected
Base Selection 141 130428
Base Selection (Tagged) 17 20+6

« So far. so good... Let's open the box!

Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 40



Open the Signal Box

e Opening the box with 1.1 tb™! Selection Observed Expected
— Event vield consistent with Base Selection 141 130428

background only. Base Selection (Tagged) 17 20+6
Anti-Tagged Selection 12 7.7+1.8

— Fluctuated about 16 high:

slichtlv “unlucky.” Tagged Selection 4 3.241.1
« Result:
Bt — Zq) < 10.4% @ 95%C.L.
— Expected limit: 6.8% £ 2.9%.
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Open the Signal Box

e Opening the box with 1.1 tb™! Selection Observed Expected
— Event vield consistent with Base Selection 141 130428

background only. Base Selection (Tagged) 17 2046
Anti-Tagged Selection 12 7.7£1.8

— Fluctuated about 16 high:

slichtlv “unlucky.” Tagged Selection 4 3.241.1
« Result:
Bt — Zq) < 10.4% @ 95%C.L.
— Expected limit: 6.8% £ 2.9%.
Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 41



Open the Signal Box

e Opening the box with 1.1 tb™! Selection Observed Expected
— Event vield consistent with Base Selection 141 130428

background only. Base Selection (Tagged) 17 2046
Anti-Tagged Selection 12 7.7£1.8

— Fluctuated about 16 high:

slightly “unlucky.” Tagged Selection 4 3.2+1.1

— Or s it the first unt of a signal?!

« Result:
;33’(1‘ — Zq) < 10.4% @ 95%C.L.

— Expected limit: 6.8% £ 2.9%.
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Mass %2 (95% C.L. Upper Limit)

= 20 JLdt=1.12 fb- Total Background -
aa - Total Syst. Uncertainties-

v* Cut

Tagged & Anti-Tagged
Selection Selection

:I’_o

10

Illllllllllllllll

%bnooo-‘?-o-o-l-

2 4 6 8§ 0 2 4 6 8

S n
lell_l_lllIIIIIIIIIIIIIIIIII
~ 10O
- O |
O] +
-0
<
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Top FCNC Outline

The Search for Top FCNC Decay
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e More / Wil m

— Add 70% more data (1.9 tb™!).

« Fit ¢~ Shape:
—  Previous version: counting
experiment.

—  Temnplate fit to '\-"xz shape:

A Seama g e R

exploit full shape information,
less sensitive to background
normalization.

*  Build on previous experience:
—  Same event selection
—  Same acceptance algebra
—  Same method of calculating

(most) systematic uncertainties

Charles Plager

Round 2: Is That The Best We Can Do?

Entries

Fermilab Wine and Cheese, Apnl 4, 2008

Mass 2 (95% C.L. Upper Limit)

- © Data
2ol fre"m'"‘ﬂy ] FCNC Signal (10.4%)
20 JLdr=1.12fb [ Total Background
== Total Syst. Uncertainties
¥ Cut
15 Tagged Anti-Tagged
Selection Selection

Page 45
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Differences From Counting Experiment

« Advantages:
— Absolute estimation of Z + jets background 1s difficult. This drove
the counting experiment.
— Since we are fitting:
* No absolute Z + jets background estimation needed.
* No estimate of Z + jets tagging fraction needed.
= Let these both float in the fit.

« Smaller backgrounds are fixed to SM expectations.

* Disadvantages:
— Counting experiment does not have shape systematic uncertainties.
« Counting experiment: Only worry about ratios of acceptances.

« Fit v* We need to understand and account for this.
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Shape Uncertainties

« What do we mean by “shape uncertainties ™?

Rate Uncertainties Shape Uncertainties
0.3 ()3
0.2 ~ 0.2 ol
0.1 - 0.1 -
() bt : ] A S T N S——
100 % g - 100 % -
0 : : 0 % FF//-\ E
-100 % 3 ] . o \ 3
0 2 4 6 8 10 /1 '

<
ta
LN
(w
e
—
<
-
>

« We considered many choices for shape uncertainties.

* The two dominant effects were much larger than all others.
— Factorization/Renormalization (Q?) scale for Z + jets MC.
— Jet energy scale uncertainties.
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Shape Uncertainties: Q?

« ALPGEN: two Q2 “knobs™ to turn.

CDF Run II Preliminary, L df = 1.9 fb-!
————— .
— ALPGEN Default |
- gqfac= ktfac=2.0.
— gfac=ktfac=0.5 1

— Factorization/renormalization scale:

Q = gfac x \/Mé +Y p3(p)

I ¥ L L]

e 2 B o : _ ~1 -

— Vertex Q- (for evaluation of ay): = ¥ Daia (1.9f07) 1
Q = ktfac x pr ~
0.1} :

— We turn both at the same time.

Normalized to Unit Area

— Not enough to explain data.

I -— l - l L

2 4 6 8 10

S
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Shape Uncertainties: JES

« We need to convert “raw” jets to “corrected” jets
= Jet Energyv Scale correction (JES)
— Takes into account detector effects. neutral particles 1n jets.
particles outside of the jet cone. underlying events, multiple

interactions. ...
xz (Pl‘e Tag, U"".g = +1) xz (Pre-Tag, 0".*(., =-1)
3 v L 5] 80 T T T T T T T ]
- ( Dl II Prcllmumn J! d.' =1 ‘) tb ! . Ddld T g Ne 1)| 1| Pthmm ary r’; df— ] -:) ﬂ-, I ® Data |
= i s BONCE ] 8 R FCNCtl A
"'u I |:| Z+Jets &3 3 [ Z+Jets
60 | G p
"nEw 17 cttlets - 50 [ Z cetlets
; + B 7 bb+lets o i [ Z bb+Jets |
- : B SM tt i L B SM tt -
40 - B Diboson 40+ B Diboson —
i KS Prob: 0.001 - KS Prob: 0.700 T
v* Prob: 0.092 | i %% Prob: 0.835 7
20 1  2F .
U 1 U = ST
0 8 10 0 6 8 10
o) 2
X" K
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Shape Uncertainties: JES

« We need to convert “raw” jets to “corrected” jets
= Jet Energyv Scale correction (JES)
— Takes into account detector effects. neutral particles 1n jets.
particles outside of the jet cone. underlying events, multiple
interactions. ...

%> (Pre-Tag, ojpg = +1) %> (Pre-Tag, oypg =-1)
m e . s I T v L] .I T ' ¥ ] ' ' L I ! v L m (- Ll T Ll l' T Ll Li i Ll Ll T 'I T L] Ll 'I T Ll T —
B [ CDF Il Preliminary [Ldr=19fb"' | ® Data 7 .2 30 Fooru Preliminary (L dr=19fb"' | ® Data l
k= I s FENERE 1] 5 e FCNCtt -
- I C1Z+Jets | M - [ Z+Jets
60 i~ =
"nEw 17 cttlets - 60 - [ Z cTtlets ]
e ! B 7 bbtlets 4 : [ Z bb+Jets |
- = ISVETEENE I EsMu
40 - B Diboson ™ 40+ B Diboson —
i KS Prob: 0.001 ] - KS Prob: 0.700 T
v* Prob: 0.092 | i %* Prob: 0.835 7
20 o 20 F .
U | IS U = ST
0 8 10 0 6 S 10
) )
X S
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Template Morphing

« Now that we have JES shifts. how do we incorporate this in our machinery?
= Implemented compound horizontal template morphing.

* Horizontal morphing 1s simply interpolating between two normalized cumulative
distribution functions (7.¢., the normalized integral of the histogram).

b2
[=]
T

Arbitrary
I_I

._
thn
T

=
T

Variable of Interest
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“Evervthing You Alwayvs Wanted To Know About
Template Morphing But Were Afraid To Ask.”

« Now that we have JES shifts. how do we incorporate this in our machinery?
= Implemented compound horizontal template morphing.

* Horizontal morphing 1s simply interpolating between two normalized cumulative
distribution functions (7.¢., the normalized integral of the histogram).

b2
[=]
T

Arbitrary
I_I

._
thn
T

=
T

Variable of Interest
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Template Morphing

« Now that we have JES shifts. how do we incorporate this in our machinery?
= Implemented compound horizontal template morphing.

* Horizontal morphing 1s simply interpolating between two normalized cumulative
distribution functions (7.¢., the normalized integral of the histogram).

b2
[=]
T

Arbitrary
I_I

._
thn
T

=
T

Variable of Interest
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Template Morphing

« Now that we have JES shifts. how do we incorporate this in our machinery?
= Implemented compound horizontal template morphing.

* Horizontal morphing 1s simply interpolating between two normalized cumulative
distribution functions (7.¢., the normalized integral of the histogram).

2% - 100%
& A
ST 5
4 )
<15 2 75 %
=
~
ol Wl
5h 25 %l
Variable of Interest Variable of Interest
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Template Morphing

« Now that we have JES shifts. how do we incorporate this in our machinery?
= Implemented compound horizontal template morphing.

* Horizontal morphing 1s simply interpolating between two normalized cumulative
distribution functions (7.¢., the normalized integral of the histogram).

— The green C.D.F. curve is the 75% interpolation between the blue and red
C.D.F. curves.

2% - 100%
& A
ST 5
4 )
<15 2 75 %
=
~
ol Wl
5h 25 %l
Variable of Interest Variable of Interest
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Template Morphing

« Now that we have JES shifts. how do we incorporate this in our machinery?
= Implemented compound horizontal template morphing.

* Horizontal morphing 1s simply interpolating between two normalized cumulative
distribution functions (7.¢., the normalized integral of the histogram).

— The green C.D.F. curve is the 75% interpolation between the blue and red
C.D.F. curves.

?" I'T., o P"
520} 4 100%} 5 20}
A T
e @) 5
— O —
<15t > 75 % < 15t
=
S
ol I - < ol
5k 25 %l 5k
Variable of Interest Variable of Interest Variable of Interest
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Does Morphing Work?

. - . _-Temlates
o Test with Gaussians
80000
— Easv to venfv it 1s working as 0000k
: | : = : —45+5
expected. :
P suuno_— —30+5
) 50000 45410
«  Works on much more complicated a0000f- -
Shapes 30000;
— Squares 20000}
— Half-circles 0
oL : 1,
— mass 7~ shapes ) S
| Center 15 width 125 | | morph
A0 Entries 96
2007 Mean 17.74
- BRMS 0.38
180? Constant 3.13719+04
1601 Sigma 1282
140
120?—
100~
80|
60|
40: B
20;#"'# H"%\H\
P S P T P~ S P T N A O
0 10 20 a0 40 50 60 70 80 a0 100
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Does Morphing Work?

1 ] . Templates

« Test with Gaussians
80000|—
— Easy to verify it 1s working as o000k
expected. 3
. 50000[
«  Works on much more complicated soncol
shapes. ool
— Squares 20000}
— Half-circles 10000E
n_u

[~
[=]
<«

— mass - shapes

[ Conior 15 widih 125 ] — morph |_Morphed x=0.00 shape=-1.00 | e
B A0° Entries 96 1= Mean 50
C Mean 17.74 = RMS 6.928
180F- RMS 10.38 0.9F
. Constant 3.187e+04 =
160E- Mean 14.97 0.8
F Sigma 12.52 o7b-
140 E
120[- .3
- 0.5
100 -
E 04
80— =
- 0.3
60/ =
F 0.2
40 - E -
b J_,.,-—-—""‘--\..,,_‘_L 0.1
: - =
20{# . N S Leooiloes el I
N T TV Pove s ST TV PUTIT PO TYT Y 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100
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Signal and Control Regions

e “Howdowe con.n'o! S_hapc’ Kinematic Variable Optimized Cut
uncertainties without hiding
a small sienal?”’ Transverse Mass > 200GeV
s signal. .
Leading Jet > 40GeV
Soluti dd control reci Second Jet > 30GeV
. : v o .
olution: add control region pyiy ey > 20Gev
with little signal acceptance:
: ) Fourth Jet > 15GeV

—  Constrain shape
uncertainties without FCNC Signal Z+Jets Background
“morphing away” signal.

—  Defiition: At least one
optimized £, or my cut
failed (do not look at any
b-tagging information). S9%)

2%

® Tagged
Anti-Tagged
@ Control
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Constraining Z + Jets Background

* We have validated that the MC works fairly well 1n a jet bin, but we do not
trust it across jet bins.
= No absolute Z + jet constraints.
e  Use MC to predict the ratio of Z + jets acceptance in the two signal regions to
the control region.
Expected Background Distributions
I L L L D B B e B B

Tagged ' Anti-Tagged Control

Events

[ O Z+ Jets (HF & LF) |
B Standard Model tt

2018 st 1

_ B Diboson (WZ, ZZ) .

L |

o 2 4 6 0 2 4 6
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Constraining Z + Jets Background

* We have validated that the MC works fairly well 1n a jet bin, but we do not
trust it across jet bins.
= No absolute Z + jet constraints.
e  Use MC to predict the ratio of Z + jets acceptance in the two signal regions to
the control region.
Expected Background Distributions
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Tagged ' Anti-Tagged Control
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trust it across jet bins.
= No absolute Z + jet constraints.

e  Use MC to predict the ratio of Z + jets acceptance in the two signal regions to
the control region.

Expected Background Distributions i ' '
T T T T T Hsig = Ratio of Z + jets

Tagged ' Anti-Tagged Control in the signal regions

Events

to the control region.
= 2(%o constraint

[ O Z+ Jets (HF & LF) |

B Standard Model tt _ . -
20 [ B Diboson (WZ, 22) | ftag = Fraction of signal
region Z + jet events
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0

o 2 4 6 0 2 4 6 0 2 4 6 & on b-tag.
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Constraining Z + Jets Background

* We have validated that the MC works fairly well 1n a jet bin, but we do not
trust it across jet bins.
= No absolute Z + jet constraints.

e  Use MC to predict the ratio of Z + jets acceptance in the two signal regions to
the control region.

Expected Background Distributions i ' '
T T T T T Hsig = Ratio of Z + jets

Tagged ' Anti-Tagged Control in the signal regions

Events

to the control region.
= 2(%o constraint

[ O Z+ Jets (HF & LF) |

B Standard Model tt _ . -
20 [ B Diboson (WZ, 22) | ftag = Fraction of signal
region Z + jet events

- E: - that contain at least
0

o 2 4 6 0 2 4 6 0 2 4 6 & on b-tag.
- I\ p— .

v Yo/ = No constraint!
Passed all four E; Failed at least one cut

and my Cuts
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Fitting ¢* Roundup

No absolute Z + jet background estimate needed.

For the template fit, we need to deal with shape uncertainties.

— Find dominant sources = JES

— Morphing of JES templates in fitter.

Do not want to “morph away " a real signal = Control region.

— Use control region also for Z + jet constraints.

Investigated effect of shape not being from JES = Small effect.

Best Fit to Pseudo-Experiment

30

=
)
=

Anti-tag o Control

[_|Backgrounds fit with morphing
- Backgrounds fit with mo morphing
O Pseudo-data

20

10

0 I L] I ] 1 l ] | L] | I

2468 2 4 ) 6 8 2 4 6 8 10
Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 54



Feldman-Cousins in Five Minutes

 How are we going to interpret our results?
* Feldman-Cousins answers the question:

“What range of true values are likely to lead to this measured value? "
Why use Feldman-Cousins?

— Guarantees coverage.

— Data tell us whether we should report a measurement or a limit.

— Our method incorporates systematic uncertainties easily.

Coverage of Feldman-Cousins Interval

% 0.96 —— C
;—: - CDF II Preliminary [L df =19 fb~! ]
2 I 3
Q N .
0.95 b T :

b . N P D

0.94 0.05 0.1 0.15

True B(r—Zq)
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Top FCNC Feldman-Cousins Bands

FCNC Feldman-Cousins Band (95% C.L.)

§o% : 1 I I
S = .
Y015 -
aa - '
L - "
s 0.1F h
— : i
0.05 =
B CDEF 11 Preliminary -
: fLdi=19" 7

() l l .

02 0 02
Measured B(r—Zq)
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Top FCNC Feldman-Cousins Bands

FCNC Feldman-Cousins Band (95% C.L.)

4= ' T T 1
I\J - —
‘? 0.15F -
S - .
M - N
2 = -
= 0.1F —
= i y
0.05 —
- CDEF II Preliminary A
| fLdr=19fb"! 1

0 2 | L 2 2 | 2 2 " | .
-0.2 ; 0.2
Measured B(r—Zq)
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Top FCNC Feldman-Cousins Bands

FCNC Feldman-Cousins Band (95% C.L.)

4= ' T T 1
m - .
1\ Ll -
o - .
M - N
2 = -
= 0.1F —
b= I .
0.05 —
. ="|CDF II Preliminary
| [Ldt=19fb" 1

() 2 | L 2 2 | M 2 " | "
~0.2 ; (.2
Measured B(1—Zq)
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Top FCNC Feldman-Cousins Bands

FCNC Feldman-Cousins Band (95% C.L.)

< — .
‘? 0.15F -
S - .
M - N
2 = -
= 0.1F —
= i y
0.05 —
B CDEF 11 Preliminary -
| fLdr=19fb"! 1

() 2 | L 2 2 2 2 " | .
-0.2 ; 0.2
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Top FCNC Feldman-Cousins Bands

FCNC Feldman-Cousins Band (95% C.L.)

< — .
‘? 0.15F -
S - .
M - N
2 = -
= 0.1F —
b= I .
0.05 —
- CDF II Preliminary 4
| fL dr=1.9 fb! _"

() 2 | L 2 2 M 2 " | "
~0.2 ; (.2

Measured B(1—Zq)
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Pseudo-Experiments (PEs)

Pseudo-experiment: Generate all necessary numbers/templates to emulate
data from an experiment.

1. Generate random numbers to simulate all systematic uncertainties.
— Pay attention to correlations.
— Vary all systematic uncertainties.
— Vernty all numbers are physical.

— Morph all templates appropriately.

PEs for True B(t— Zq)=0.0150
2. Generate numbers of background 7 . ——

and signal events. 540000 - .
3. For each type of event, use i i
) ) 30000 =
templates to generate mass y-. I 1
4. Fit as 1if data. 20000 =
35 at! I '
5. Repeat! 10000F £
- . D

% 0 0.5
Measured B(t—Zq)
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FC Band Construction In A Nutshell

m

PEs for True B(t— Zq)=0.0150

40000 F

30000 F

20000

10000

ok

%5

0

Charles Plager

05
Measured B(t—Zq)
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FC Band Construction In A Nutshell

PEs for True B(t— Zq)=0.0150

240000 — —
30000 =
ZLALY 8 B PEs generated with all statistical
4_ =
10000 E and systematic uncertainties.
| ; - 5 ; 1 " ; . 3
%3 0 0.5
Measured B(t—Zq)
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FC Band Construction In A Nutshell

m

PEs for True B(t— Zq)=0.0150

40000 F

30000 F

20000

10000

ok

%5

0

Charles Plager

05
Measured B(t—Zq)
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FC Band Construction In A Nutshell

PEs for True B(t— Zq)=0.0150

E.mam - . » Use Likelihood Ratio Ordering Principle:
30000F . SRT : P( Mmeas | Htrue
: : Likelihood Ratio(meas) = ( | )
20000 | B P(Jumeashubest)
10000 -
%5 0 — 05
Measured B(t—Zq)
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FC Band Construction In A Nutshell

PEs for True B(t— Zq)=0.0150

E.;()(J(}() - . » Use Likelihood Ratio Ordering Principle:
30000 F . N : P( Umeas | Htrue
5 : Likelihood Ratio(meas) = PELL | ﬁb ;
20000 - meas est
10000 F :

1 . . N . L . . . r
% 0 0.5
Measured B(t—Zq)

Likelihood Ratio for B(t — Zq) = 0.0150

-

0.5

o \

| L L L L L L A L |
-0.5 0 0.5

I 1 1 1 1 I 1 1 1 1 I
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FC Band Construction In A Nutshell

PEs for True B(t — Zq)=0.0150

Emom = . e Use Likelihood Ratio Ordering Principle:
30000:— _: . . . P JUV]'I'ICB.S ulrue
: ; Likelihood Ratio(tmeas) = ( | )
20000 | . P(Hmeas|ﬂbest)
10000 -
: ;i i g ., i i i 3
%3 0 0.5

Measured B(t—Zq)

Likelihood Ratio for B(t — Zq) = 0.0150

1+ i
0.5+ —
L \ _
| L L L L 1 L L ) L |
-0.5 0 0.5
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FC Band Construction In A Nutshell

PEs for True B(t— Zq)=0.0150

E.mam - . » Use Likelihood Ratio Ordering Principle:
30000 . SRT . P( Umeas | Utrue
: : Likelihood Ratio(meas) = ( | )
20000 F - P(Hmeashubest)
10000 \ = .
_ T 95% of PEs
0 L " ._.J 1 ."I.L i r
%3 0 0.5

Likelihood Ratio for

Measured B(t—Zq)

3(t — Zq) = 0.0150

-

0.5

0k

I 1 1 1 1 I 1 1 1 1 I

| L
-0.5
Charles Plager

0

L |
0.5
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PEs for True B(t — Zq)=0.0150

Emomj— ] .
30000 |- .
20000 F =
10000 F \ . :
: T95% of PEs FCNCF
D5 o o5 S
. Measured B(t—>Zq]“ I_ 0.5 :_
B L
S 0.1}
Likelihood Ratio for B(t — Zq) = 0.0150 -
I+ . 0.05F
- ] =
I i JUTOT L L 0.2
Lolp o TP E
oL \ _
| L 1 L L ) L |
-0.5 0 0.5

Charles Plager

FC Band Construction In A Nutshell

Use Likelihood Ratio Ordering Principle:

Likelihood Ratio(tmeas) =

_ P(Umeas| tirue)

P(Jumeas |1U~best)

eldman-Cousins Band (95% C.L.)

1

an®
......
e

CDF II Preliminary A
JLdr=19f"" ]

Fermilab Wine and Cheese, Apnl 4, 2008

02
Measured B(r—=Zq)



Expected Limit

FCNC Feldman-Cousins Band (95% C.L.) PEs for True B(t — Zq)=0.0000
= L L T e ,
[Qj 0.15F ] .g I hmeasBF_bf0000
:I‘} ; La ; F Entries ES(IIK)_—
"3 E | Lo | Mean -0.002052 |
[f_ g.1r = RMS  0.02305]

0.05F “ 20000 .
L CDF 11 Preliminary i J \ q
: fLdr=19fb1 1] :
I 1T ‘. | a 1 .
0.2 0 0.2 -0.5 0 0.5
Measured B(r—Zq) Measured B(t->Zq)
FCNC Expected Limit

gj B - T '. '. | " _' S AT PN : J

& 015 B CDF 11 Preliminary [L dr= 1.9 fb~ ]

E ! ]

o 01k Expected Limit: 1

“EE— 5 Ol Mean: (5.0 +2.2)% -

X i Median: (4.7 37)% ]

£ 0.05F -

S i ]

) |

{) " 2 L 1 _. " " " 1 1 i 1 -. " M M
0 0.05 0.1 0.15 0.2
Expected B(—Zgq)
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The Fit to the Data &15
_ Best Fit to Mass xi

m L 'I r v 7 l r v ¥ I LI L E LI LI I LI l LI L B | I L I I LN B | I L B |
S Tagged 1 Anti-Tagged ' Control
LE . (13 Events) ‘ (53 Events) .H,s'ﬁ Events)
® Data(19fb") CDF II Preliminary
40} T ey + g -
fLdt=19fb! -
Fit Uncertainty | _
D/*.qu(lil&ll]. . ®
9 B Standard Model tt
20} T o + -
| B Diboson (WZ,7Z7) | |_|‘l ' r‘

3 ‘Eln.-*a#é_l‘&“....i—_!ju,.

o 2 4 o6 0 2 4 o6 0 2 4 o6 &

xz
Fit Parameter ([ Zdt = 1.9fb™ . Value
Branching Fraction, Z(t — Zq) (%) —1.49 + 1:52
Z+Jets Events in Control Region, Z.qnro1  129.0 = 1.1
Ratio Signal/Control Region, %, 0.52 &£ 0.07
Tagging Fraction, fiae (%) 20.0 -+ 5.9
Jet Energy Scale Shift, ojgs —-0.74 + 0.43
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F.C. 95% C.L. Limit
FCNC Feldman-Cousms Band (95% C.L))

o) [
ﬁ 0.7 N Besz‘ F i: B
r 0151 Ba—zq) = —0.0149 _
n l 1
Q) =~ -
= 0.1 B
=~ ) I
B 95% C.L. Limit: -
0.05 [ B(i—7q) < 3.7% .
! i CDF II Preliminary :
: JLdt=19fb"!

0 . | . . .Yy . . . | :
—0.2 () 0.2
Measured B(1—Zq)
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Outline
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Summary

t— Zc Search Results

« CDF and the Tevatron are running very

well. 9
= I
— Thanks A.D.! g |
o 351
E i
- |
£ 30
[ "
=
*  We just finished Run II's first search & 25l

for Top FCNC t — Z c. _
— Using 1.9 fb, 20[

we have the world’s best limuit: l
15

Br(t— Zc¢)<3.7% at 95% C.L.
10
« Using data-based background
. . . . 5
techniques will be very important for :
the LHC. o
CDF L3 CDF CDF
Run I LEP II Run I Run II
(110 pbly (@630ppb-)y (@1l (@9
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Money Plot

Best Fit to Mass 72

” N B B | | | LA LS LA A
E Tagged | Anti-Tagged ' Control
5 (13 Events) 1 (53 Events) [ (136 Events)
! i ! @
40} @ Data (1.9 fb=1) | CDF I Preliminary | [Fl— _
| O FCNCtt(3.7%) | [Ldr=19 fb!
Fit Uncertainty | _ ®
| O Z+Jets (HF & LF) | | ®
20k B Standard Model tt | 1 _
| B Diboson (WZ,27) | [T
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New Era of Precision Top Physics!

2006 PDG Top Entry
I(4P) = 0(3+)

Charge = % € Top = +1

Mass m = 174.2+3.3 GeV (6] (direct observation of top events)
Mass m = 172.3:13:2 GeV  (Standard Model electroweak fit)

p
t DECAY MODES Fraction (I';/T) Confidence level (MeV/c)
Wq(q = b, s, d) -
W b -
fvganything [c.d] ( 9.4%2.4)% -
T b -
vq(g=u,c) [e] < 5.9 x 103 95% -
AT =1 weak neutral current (T1) modes
Zq(g=u,c) T1  [f]<13.7 % 95% -
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2008 PDG Top Entry
I(UP) = 0(3+)

Charge = %— € Top = +1

Mass m = 172.6 + 1.4 GeV (6] (direct observation of top events)
Mass m = 1?2.3:12:2 GeV  (Standard Model electroweak fit)

p

t DECAY MODES Fraction (I;/T) Confidence level (MeV/c)
Wq(q = b, s, d) -
W b -

£vpanything [ed] (9.4%£2.4)% -

T b -

vq(g=u,c) [e] < 5.9 x 103 95% -

AT =1 weak neutral current (T1) modes
Zq(g=u,c) T1  [f]<13.7 % 95% -
Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 65



New Era of Precision Top Physics!

2008 PDG Top Entry
I(UP) = 0(3+)

Charge = %— € Top = +1

Mass m = 172.6 + 1.4 GeV (6] (direct observation of top events)
Mass m = 1?2.3:12:2 GeV  (Standard Model electroweak fit)

p

t DECAY MODES Fraction (I;/T) Confidence level (MeV/c)
Wq(q = b, s, d) -
W b -

£vpanything [ed] (9.4%£2.4)% -

T b -

vq(g=u,c) [e] < 5.9 x 103 95% -

AT =1 weak neutral current (T1) modes
Zq(g=u,c) T1 [fl< 3.7 % 95% -
Charles Plager Fermilab Wine and Cheese, Apnl 4, 2008 Page 65



New Era of Precision Top Physics!

2010 PDG Top Entry
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New Era of Precision Top Physics!

2010 PDG Top Entry
I(4P) = 0(3+)

Charge = %— € Top = +1

Mass m = 172.6 + 1.4 GeV (6] (direct observation of top events)
Mass m = 1?2.3:12:2 GeV  (Standard Model electroweak fit)
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gq(g=uyc)
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New Era of Precision Top Physics!

2010 PDG Top Entry
1(JP) = 0(3F)

Charge = % € Top = +1

Mass m = 172.6 + 1.4 GeV (6] (direct observation of top events)
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5o Evidence for single top production
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New Era of Precision Top Physics!

2010 PDG Top Entry

I(JP) = 0(3+)

Charge = % € Top = +1

Mass m = 172.6 + 1.4 GeV (6] (direct observation of top events)
Mass m = 1?2.3:12:2 GeV  (Standard Model electroweak fit)

p
t DECAY MODES Fraction (I;/T) Confidence level (MeV/c)
Wq(q = b, s, d) -
Wb —
fvganything [c.d] ( 9.4%2.4)% -
T b -
vq(g=u,c) [e] < 5.9 x 103 05% -
AT =1 weak neutral current (T1) modes
Zq(g=u,c) T1 [f] < 3.7 % 95% -
Yq (g =u,c)
gq(g=u,x)
5o Evidence for single top production
(Your analysis here?!)
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Best Fit to Mass 72

” N B B | | | LA LS LA A
E Tagged | Anti-Tagged ' Control
5 (13 Events) 1 (53 Events) [ (136 Events)
! i ! @
40} @ Data (1.9 fb=1) | CDF I Preliminary | [Fl— _
| O FCNCtt(3.7%) | [Ldr=19 fb!
Fit Uncertainty | _ ®
| O Z+Jets (HF & LF) | | ®
20k B Standard Model tt | 1 _
| B Diboson (WZ,27) | [T
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