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LHC is coming,  what do we expect to see?
Will we know what we discover if we see 
something at the LHC? 

Hints we have for new physics  @ 1 TeV: 

• Electroweak symmetry breaking:  New Physics @ 
TeV should explain the origin of the electroweak 
symmetry breaking, and/or the associated 
hierarchy problem. Possibilities include new 
interactions and new particles which cancel the 
quadratically divergent contributions to the Higgs 
masses squared from the Standard Model, or 
unitarize the WW scattering amplitude at high 
energies.



• Dark matter (best evidence for new physics 
beyond the Standard Model): If the dark matter 
is the thermal relic of a WIMP, its mass should 
be of the weak scale,

Another hint of the TeV scale: dark matter

A weakly interacting stable neutral particle with

a weak scale mass gives the right thermal relic

abundance for the dark matter.

Ωwimp ∼
(

1

102α

)2 (
mwimp

1 TeV

)2

Therefore, we expect to discover not only the

Higgs boson, but also exciting new physics at

these TeV colliders.

A stable (electrically) neutral weakly 
interacting particle at or below 1 TeV.
To be stable, it should be the lightest 
particle charged under a new symmetry.



• Electroweak precision measurements: There is no 
evidence of deviations of the EW observables 
from the SM predictions. (The little hierarchy 
problem)

1. Operators that violate the (approximate)

symmetries of the SM, e.g., baryon num-

ber, flavor, CP, are strongly constrained.

⇒ New physics at ∼ 1 TeV should also

(approximately) respect these symmetries.

2. Operators that do not violate the SM sym-

metries are also constrained by the preci-

sion electroweak measurements.

Dimension six operator ci = −1 ci = +1

OWB = (H+σaH)W a
µνBµν 9.0 13

OH = |H+DµH)|2 4.2 7.0

OLL = 1
2
(L̄γµσaL)2 8.2 8.8

OHL = i(H+DµH)(L̄γµL) 14 8.0

(Barbieri and Strumia ’00)

No evidence for new physics has been found

up to ∼ 10 TeV (assuming ci ∼ O(1)).

New physics contributions to these EW observables 
should be suppressed. This is possible if new 
particles charged under a new symmetry under 
which SM is neutral. Then their contributions will be 
loop-suppressed.



A plausible scenario by taking these hints seriously:

New particles (vector bosons, fermions, scalars) at 
TeV are charged under a new symmetry (the simplest 
possibility is a Z2 parity) and the lightest one (LPOP)
is electrically neutral.

Collider phenomenology: Pair productions of these 
new particles. Their cascade decays down to LPOP 
give rise to missing energy plus jets and/or leptons.



What is the new physics if we see jets/leptons + 
missing energy at the colliders?

The standard answer: Supersymmetry (with R-parity)!
For a long time, this is the only candidate.

From the above discussion, we see that any new 
physics satisfying the hints we have now may show up 
at the LHC with similar signals.

In the last few years, there have been several such 
SUSY-fakers proposed: 

• Universal Extra Dimensions (UEDs) (this talk)

• Little Higgs theories with T-parity (M. Schmaltz’s talk)



• All Standard Model fields propagate in the same 
extra dimensions.

• To have 4D chiral fermions, the extra dimensions 
should be compactified on an orbifold.

• From the 4D point of view, there are Kaluza-Klein 
(KK) towers of states for all SM particles, with 
masses governed by the inverse of the 
compactified radius.

Universal Extra Dimensions
(Appelquist, HC, Dobrescu, hep-ph/0012100)



• Masses of the KK states = n/R + corrections from 
boundary terms and finite nonlocal bulk 
contributions.

• Boundary terms receive divergent radiative 
corrections from the bulk interactions, so counter 
terms must be included.

• A KK-parity           is preserved by radiative 
corrections , so it can be consistently imposed.

Simplest possibility: one extra dimension on S /Z2
1

x5 = πRx5 = 0

(−1)n



Minimal UEDs (boundary terms vanish at the cutoff)
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preserve the 5th dimensional momentum (KK number).
The corresponding coupling constants among KK modes
are simply equal to the SM couplings (up to normaliza-
tion factors such as

√
2). The Feynman rules for the KK

modes can easily be derived (e.g., see Ref. [8, 9]).
In contrast, the coefficients of the boundary terms are

not fixed by Standard Model couplings and correspond
to new free parameters. In fact, they are renormalized
by the bulk interactions and hence are scale dependent
[10, 11]. One might worry that this implies that all pre-
dictive power is lost. However, since the wave functions
of Standard Model fields and KK modes are spread out
over the extra dimension and the new couplings only
exist on the boundaries, their effects are volume sup-
pressed. We can get an estimate for the size of these
volume suppressed corrections with naive dimensional
analysis by assuming strong coupling at the cut-off. The
result is that the mass shifts to KK modes from bound-
ary terms are numerically equal to corrections from loops
δm2

n/m2
n ∼ g2/16π2.

We will assume that the boundary terms are symmetric
under the exchange of the two orbifold fixed points, which
preserves the KK parity discussed below. Most relevant
to the phenomenology are localized kinetic terms for the
SM fields, such as

δ(x5) + δ(x5 − πR)

Λ

[

G4(Fµν)2 + F4Ψi/DΨ + F5Ψγ5∂5Ψ
]

,

(2)

where the dimensionless coefficients G4 and Fi are arbi-
trary and not universal for the different Standard Model
fields. These terms are important phenomenologically for
several reasons: (i) they split the near-degeneracy of KK
modes at each level, (ii) they break KK number conserva-
tion down to a KK parity under which modes with odd
KK numbers are charged, (iii) they introduce possible
new flavor violation.

Since collider signatures depend strongly on the values
of the boundary couplings it is necessary to be definite
and specify them. A reasonable ansatz is to take flavor-
universal boundary terms. Non-universalities would give
rise to FCNCs as in supersymmetry with flavor violating
scalar masses. This still leaves a large number of free pa-
rameters. For definiteness, and also because we find the
resulting phenomenology especially interesting, we make
the assumption that all boundary terms are negligible at
some scale Λ > R−1. This defines our model.

Note that this is completely analogous to the case of
the Minimal Supersymmetric Standard Model (MSSM)
where one has to choose a set of soft supersymmetry
breaking couplings at some high scale, before studying
the phenomenology. Different ansaetze for the parame-
ters can be justified by different theoretical prejudices but
ultimately one should use experimental data to constrain
them. In a sense, our choice of boundary couplings may
be viewed as analogous to the simplest minimal super-
gravity boundary condition – universal scalar and gaug-
ino masses. Thus the model of MUEDs is extremely pre-

FIG. 1: One-loop corrected mass spectrum of the first KK
level in MUEDs for R

−1 = 500 GeV, ΛR = 20 and mh = 120
GeV.

FIG. 2: Radiative corrections (in %) to the spectrum of the
first KK level for R

−1 = 500 GeV, versus ΛR.

dictive and has only three free parameters:

{R, Λ, mh} , (3)

where mh is the mass of the Standard Model Higgs boson.
The low energy KK spectrum of MUEDs depends on

the boundary terms at low scales which are determined
from the high energy parameters through the renormal-
ization group. Since the corrections are small we use the
one-loop leading log approximations. In addition to the
boundary terms we also take into account the non-local
radiative corrections to KK masses. All these were com-
puted at one-loop in [10].

A typical spectrum for the first level KK modes is
shown in Fig. 1. Fig. 2 shows the dependence of the split-
tings between first level KK modes on the cutoff scale Λ.
Typically, the corrections for KK modes with strong in-
teractions are > 10% while those for states with only
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electroweak interactions are a few percent. We find that
the corrections to the masses are such that mgn

> mQn
>

mqn
> mWn

∼ mZn
> mLn

> m!n
> mγn

. The light-
est KK particle γ1, is a mixture of the first KK mode
B1 of the U(1)Y gauge boson B and the first KK mode
W 0

1 of the SU(2)W W 3 gauge boson. (The possibility of
the first level KK graviton being the LKP is irrelevant
for collider phenomenology, since the decay lifetime of γ1

to G1 would be of cosmological scales.) We will usually
denote this state by γ1. However, note that the corre-
sponding “Weinberg” angle θ1 is much smaller than the
Weinberg angle θW of the Standard Model [10], so that
the γ1 LKP is mostly B1 and Z1 is mostly W 0

1 . The mass
splittings among the level 1 KK modes are large enough
for the prompt decay of a heavier level 1 KK mode to a
lighter level 1 KK mode. But since the spectrum is still
quite degenerate, the ordinary SM particles emitted from
these decays will be soft, posing a challenge for collider
searches.

The terms localized at the orbifold fixed points also
violate the KK number by even units. However, assum-
ing that no explicit KK-parity violating effects are put
in by hand, KK parity remains an exact symmetry. The
boundary terms allow higher (n > 1) KK modes to decay
to lower KK modes, and even level states can be singly
produced (with smaller cross sections because the bound-
ary couplings are volume suppressed). Thus KK number
violating boundary terms are important for higher KK
mode searches as we will discuss in Section IV.

III. FIRST KK LEVEL

Once the radiative corrections are included, the KK
mass degeneracy at each level is lifted and the KK modes
decay promptly. The collider phenomenology of the first
KK level is therefore very similar to a supersymmetric
scenario in which the superpartners are relatively close
in mass - all squeezed within a mass window of 100-200
GeV (depending on the exact value of R). Each level
1 KK particle has an exact analogue in supersymmetry:
B1 ↔ bino, g1 ↔ gluino, Q1(q1) ↔ left-handed (right-
handed) squark, etc. The decay cascades of the level 1
KK modes will terminate in the γ1 LKP (Fig. 3). Just
like the neutralino LSP is stable in R-parity conserving
supersymmetry, the γ1 LKP in MUEDs is stable due to
KK parity conservation and its production at colliders
results in generic missing energy signals.

It is known that supersymmetry with a stable neu-
tralino LSP is difficult to discover at hadron colliders
if the superpartner spectrum is degenerate. Hence the
discovery of level 1 KK modes in MUEDs at first sight
appears problematic as well – the decay products result-
ing from transitions between level 1 KK states may be
too soft for reliable experimental observation at hadron
colliders. This issue is the subject of this Section.

Before we address the possible level 1 discovery chan-
nels in some detail, we need to determine the allowed

FIG. 3: Qualitative sketch of the level 1 KK spectroscopy de-
picting the dominant (solid) and rare (dotted) transitions and
the resulting decay product.

decays at level 1 and estimate their branching fractions.
For any given set of input parameters (3) the mass spec-
trum and couplings of the KK modes in MUEDs are
exactly calculable [10]. Hence one obtains very robust
predictions for the main branching ratios of interest for
phenomenology.

KK gluon.— The heaviest KK particle at level 1 is the
KK gluon g1. Its two-body decays to KK quarks Q1 and
q1 are always open and have similar branching fractions:
B(g1 → Q1Q0) $ B(g1 → q1q0) $ 0.5.

KK quarks.— The case of SU(2)-singlet quarks (q1)
is very simple – they can only decay to the hyper-
charge gauge boson B1, hence their branchings to Z1

are suppressed by the level 1 Weinberg angle θ1 % θW :
B(q1 → Z1q0) $ sin2 θ1 ∼ 10−2 − 10−3 while B(q1 →
γ1q0) $ cos2 θ1 ∼ 1. Thus q1 production yields jets
plus missing energy, the exception being t1 → W+

1 b0 and
t1 → H+

1 b0 (the latter will be in fact the dominant source
of H+

1 production at hadron colliders).
SU(2)-doublet quarks (Q1) can decay to W±

1 , Z1 or
γ1. In the limit sin θ1 % 1 SU(2)W -symmetry implies

B(Q1 → W±
1 Q′

0) $ 2B(Q1 → Z1Q0) (4)

and furthermore for massless Q0 we have

B(Q1 → Z1Q0)

B(Q1 → γ1Q0)
$

g2
2 T 2

3Q (m2
Q1

− m2
Z1

)

g2
1 Y 2

Q (m2
Q1

− m2
γ1

)
, (5)

where g2 (g1) is the SU(2)W (U(1)Y ) gauge coupling, and
T3 and Y stand for weak isospin and hypercharge, corre-
spondingly. We see that the Q1 decays to SU(2) gauge
bosons, although suppressed by phase space, are numeri-
cally enhanced by the ratio of the couplings and quantum
numbers. With typical values for the mass corrections
from Fig. 2, eqs. (4) and (5) yield B(Q1 → W±

1 Q′
0) ∼

65%, B(Q1 → Z1Q0) ∼ 33% and B(Q1 → γ1Q0) ∼ 2%.

HC, Matchev, Schmaltz, hep-ph/0204342, 0205314



The approximate degeneracy at each KK level may be 
altered by large boundary terms, or more creative 
model-building.
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Figure 1: Graphical solution of the eigenmass equation, − tan[πmR] = (rc/2R) × mR for
several values of rc/R.

where Zn is a normalization factor with dimensions of mass. This equation is consistent with
Equation (12), indicating that we have successfully diagonalized the KK decomposition.

Note that Eq. (17) always has a solution for mn = 0, and that the corresponding f0(x5)
is always a constant. Thus, there is always a zero mode gauge field whose profile does
not depend on the extra dimension. In the limit rc → 0, in which the brane kinetic term
is negligible, we reproduce the standard KK spectrum with masses n/R. In Figure 2, we
present the masses of the first four KK modes as a function of rc/R. Clearly, for rc/R ∼ 1,
the spectrum shows some distortion in the spacing between the lowest modes. For any rc/R,
the higher modes asymptote to equal spacing of 1/R as expected, though the spectrum still
shows an over-all shift dependent on rc/R. For rc % R, the masses asymptotically approach
n/2R.

It is also instructive to examine the couplings of the KK tower to various types of fields,
either confined to branes or living in the bulk. Some representative interaction terms in the
5d theory are,

L =
∫

dx5

{

δ(x5 − xψ)
[

ψAµγ
µψ

]

+

(

1

g2
5

+
δ(x5)

g2
a

)

[

2(∂µAa
ν − ∂νAa

µ)f
abcAµ

bAν
c

]

+

(

1

g2
5

+
δ(x5)

g2
a

)

[

fabcfadeAµ
bAν

cAd
µAe

ν

]

}

. (22)

The first term represents coupling to a fermion on a brane at xψ (for a bulk fermion mode
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Figure 4: The n = 1, 2, 3, 4 (bottom to top) KK mode masses in units of 1/R and KK mode
couplings relative to the zero mode coupling as a function of rc/R for two branes with equal
terms.

in terms of the new wave functions. The couplings among gauge modes are,

gnml =
1√

ZnZmZl
×

∫

dx5

(

1

g2
5

+
δ(x5)

g2
a

+
δ(x5 − πR)

g2
b

)

fn(x5) fm(x5) fl(x5) (35)

gnmlk =
1√

ZnZmZlZk
×

∫

dx5

(

1

g2
5

+
δ(x5)

g2
a

+
δ(x5 − πR)

g2
b

)

fn(x5) fm(x5) fl(x5) fk(x5)(36)

In particular, the zero mode coupling is,

1

g2
0

=
2πR

g2
5

+
1

g2
a

+
1

g2
b

. (37)

Before considering specific two-brane configurations, we note that many of these formulae
are easy to generalize. In particular, the Zn generalize into an obvious sum of 1/g2

5 plus
f 2

n(xi)/g2
i for each opaque brane at xi with coefficient 1/g2

i . The coupling to brane matter
fields always takes the same form, and the bulk couplings generalize to an integral over the
same product of the fn times 1/g2

5 plus δ(x5 − xi)/g2
i . What remains is to determine the

eigenmass equation and associated wave functions for a given set of branes, a straight-forward
(but in the case of many branes, tedious) exercise.

3.2.1 Symmetric Branes

For our first example, consider equal brane kinetic terms, ra = rb ≡ rc. This is the case
induced by radiative corrections to 5d theories with orbifold boundary conditions and no
brane fields. Note that this set-up preserves a Z2 symmetry under which even number KK

12

Carena, Tait, Wagner, hep-ph/0207056



• KK excitations and superpartners have different 
spins.

• There are higher levels of KK excitations in 
UEDs.

There are two robust distinctions between UEDs and 
SUSY:



Collider Searches for Level 2 KK Particles

Level 2 KK particles are even under KK-parity.  They 
can be singly produced and decay back to SM 
particles (through boundary terms).

FIG. 9: The γ2 − Z2 diresonance structure in UED with R−1 = 500 GeV, for (a) the dimuon and

(b) the dielectron channel at the LHC with L = 100 fb−1. The SM background is shown with the

(red) continuous underlying histogram.

in the Minimal UED model, the “good dark matter” region, where the LKP relic density

accounts for all of the dark matter component of the Universe, is at R−1 ∼ 500 − 600 GeV

[39, 43, 44]. This region is well within the discovery reach of the LHC for both n = 1 KK

modes [2] and n = 2 KK gauge bosons (Fig. 8). If the LKP accounts for only a fraction of

the dark matter, the preferred range of R−1 is even lower and the discovery at the LHC is

easier.

From Fig. 8 we also see that the ultimate reach of the LHC for both γ2 and Z2, after

several years of running at high luminosity (L ∼ 300 fb−1), extends up to just beyond

R−1 = 1 TeV. One should keep in mind that the actual KK masses are at least twice as

large: mV2
∼ m2 = 2/R, so that the KK resonances can be discovered for masses up to 2

TeV.

While the n = 2 KK gauge bosons are a salient feature of the UED scenario, any such

resonance by itself is not a sufficient discriminator, since it resembles an ordinary Z ′ gauge

boson. If UED is discovered, one could then still make the argument that it is in fact some

sort of non-minimal supersymmetric model with an additional gauge structure containing

neutral gauge bosons. An important corroborating evidence in favor of UED would be the

simultaneous discovery of several, rather degenerate, KK gauge boson resonances. While

SUSY also can accommodate multiple Z ′ gauge bosons, there would be no good motivation

24

Level 2 gauge bosons,  Datta, Kong, Matchev, hep-ph/0509246

Can it be SUSY + Z’s?



The masses of the level 2 particles also depend on 
the number and the shape of extra dimensions. 

E.g., 2 extra dimensions on a chiral square, T /Z4

(Burdman, Dobrescu, Ponton, hep-ph/0506334, 0601186)

2Compactification on the Folded Square

Dobrescu & EP (2004)

Identify adjacent sides of a square:

x4

x5

Consider a free scalar field theory

SΦ =

∫

d4x

∫ L

0
dx4

∫ L

0
dx5

(

∂αΦ†∂αΦ − M2
0 Φ†Φ

)

Previous identifications correspond to imposing

Φ(xµ, y, 0) = eiθΦ(xµ, 0, y) Φ(xµ, y, L) = eiθ̃Φ(xµ, L, y)

and the variational principle further requires

∂5Φ|(x4,x5)=(y,0) = −eiθ ∂4Φ|(x4,x5)=(0,y)

∂5Φ|(x4,x5)=(y,L) = −eiθ̃ ∂4Φ|(x4,x5)=(L,y)

• Level 2 (1,1) mass:

• Existence of “spinless adjoints” from extra 
components of the gauge fields, which decay 
predominately to top quarks.

M(1,1) ∼
√

2M(1,0)



Spin Measurements at LHC

• To distinguish SUSY from its fakers such as UED 
or T-parity, we need to measure the spins of the 
produced particles.

• It’s quite a challenge at a hadron collider.

- 2 missing particles, CM frame not known

- Complicated decay chains, hard to identify 
subchains

• Need MC tools which keep spin correlations



Spin measurements at LHC

Public: 

SUSY with Herwig

SUSY with MadGraph (SMadGraph)

Private:

UEDs with CompHEP (Kong and Matchev)

UEDs+more with Herwig (Yavin)

T-parity with MadGraph (Hubisz, Meade, Reece)

......

Tools available or being developed (as far as I know
and see talks in this workshop):



Spin Measurements at LHC

Some attempts

Barr hep-ph/0405052
Smille, Webber, hep-ph/0507170
Datta, Kong, Matchev, hep-ph/0509246
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UED: Q1
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γ1

q

"± (near)

"∓ (far)

FIG. 10: Twin diagrams in SUSY and UED. The upper (red) line corresponds to the cascade decay

q̃ → qχ̃0
2 → q"±"̃∓L → q"+"−χ̃0

1 in SUSY. The lower (blue) line corresponds to the cascade decay

Q1 → qZ1 → q"±"∓1 → q"+"−γ1 in UED. In either case the observable final state is the same:

q"+"− /ET .

analogous decay chain Q1 → qZ1 → q!±!∓1 → q!+!−γ1 in UED [11, 12]. Both of these

processes are illustrated in Fig. 10.

FIG. 11: Lepton-quark invariant mass distributions in (a) UED with R−1 = 500 GeV and (b)

supersymmetry with a matching sparticle spectrum. We show separately the distributions with

the near and far lepton, and their sum. The positive (negative) charge leptons are shown in red

(blue).

Next, one forms the lepton-quark invariant mass distributions M!q (see Fig. 11). The

spin of the intermediate particle (Z1 in UED or χ̃0
2 in SUSY) governs the shape of the

distributions for the near lepton. However, in practice we cannot distinguish the near and

far lepton, and one has to include the invariant mass combinations with both leptons. This

tends to wash out the spin correlations, but a residual effect remains, which is due to the
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FIG. 12: Comparison of the charge asymmetry A+− defined in eq. (8) as computed in the case of

UED with R−1 = 500 GeV and the case of supersymmetry with a matching sparticle spectrum.

different number of quarks and antiquarks in the proton, which in turn leads to a difference

in the production cross-sections for squarks and anti-squarks [9]. The spin correlations are

encoded in the charge asymmetry [9]

A+− ≡
(

dN(q!+)

dMql

−
dN(q!−)

dMql

)/ (

dN(q!+)

dMql

+
dN(q!−)

dMql

)

, (8)

where q stands for both a quark and an antiquark, and N(q!+) (N(q!−)) is the number of

entries with positively (negatively) charged lepton. Our comparison between A+− in the

case of UED and SUSY [11, 12] is shown in Fig. 12. We see that although there is some

minor difference in the shape of the asymmetry curves, overall the two cases appear to be

very difficult to discriminate unambiguously, especially since the regions near the two ends

of the plot, where the deviation is the largest, also happen to suffer from poorest statistics.

Notice that we have not included detector effects or backgrounds. Finally, and perhaps most

importantly, this analysis ignores the combinatorial background from the other jets in the

event, which could be misinterpreted as the starting point of the cascade depicted in Fig. 10.

Overall, Fig. 12 shows that although the asymmetry (8) does encode some spin correlations,

distinguishing between the specific cases of UED and SUSY appears challenging. These

results have been recently confirmed in [14], where in addition the authors considered a

study point with larger mass splittings, as expected in typical SUSY models. Under those
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Spin Measurements at LHC
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Figure 5: The points show the cos θ∗ll distribution for the S5 signal sample ("̃+"̃− →

χ̃0
1"

+ χ̃0
1"

−) after an integrated luminosity of 200 fb−1. The lines show the predictions for

angular distributions according to supersymmetry (solid black line, eq. 2.2), phase space

(dotted blue line, eq. 2.3), and universal extra dimensions (dashed red line, eq. 2.5). The

error bars on the data show the statistical uncerainty on: inner error bar: SUSY signal

only; intermediate error bar: inclusive SUSY with the SUSY background subtracted; outer

error: inclusive SUSY with both the SUSY and the SM backgrounds subtracted. The

narrow shaded band around the SUSY expectation shows how it is modified when the

sparticle masses are simultaneously changed for all sparticles by ±20 GeV, as described in

section 4.4. Systematic uncertainties in the SUSY and SM background subtraction are not

included here, but are discussed in sections 4.2 and 4.3.

space one or the UED-like one. This means cos θ∗ll does indeed measure the spin of
the sleptons for this point.

In fig. 6 we present the statistical separation expected for our test points (S5

and the Snowmass points) as a function of integrated luminosity. The significance
indicated is shows the gaussian-equivalent significance of each of two tests:

1. A test comparing the SUSY angular distribution (eq. 2.2) to the phase space
one (eq. 2.3) – demonstrating that there is sensitivity to spin in the dynamics;

and separately,

2. A test comparing the SUSY angular distribution to the UED-like one (eq. 2.5)
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with Universal Extra Dimensions (UED) and Kaluza-Klein (KK) parity [1] could
have very similar collider phenomenology to supersymmetric model [2].

The minimal version of UED predicts that for each SM particle there should be

a tower of Kaluza-Klein (KK) excitations. KK parity means that particles with odd
KK-number, such as the first excited state of any SM particle can only be produced
in pairs. It also ensures that the lightest KK particle must be stable, in the same way

as R-parity does for supersymmetry. Distinguishing between SUSY and UED could
therefore be a difficult problem, since both models predict TeV-scale pair-produced

particles which decay through cascades with Standard Model couplings, with the
eventual production of a pair of invisible daughters (LSP or LKP).

While other measurements might be indicative [3, 4], the property which will a
give conclusive answer as to whether we are observing SUSY or UED is the spin of

the excited particles.

Recently some progress has been made towards spin-determination of supersym-
metric particles at the LHC. The method, suggested in [5] and investigated in [3,6,7],

involved measurement of the lepton charge asymmetry in !q invariant mass distribu-
tions in the cascade decay,

q̃L → χ̃0
2 qL → l̃±R l∓ qL . (1.1)

That measurement was shown to have sensitivity to the spin of the χ̃0
2. While it was

comforting to see that the LHC can have sensitivity to sparticle spins, the caveat

is that in some parts of parameter space, the decay chain eq. 1.1 is kinematically
forbidden or has a small branching ratio. This makes it important to investigate

other channels and other particles for which the LHC experiments could measure
spin.

In this paper we present a new method for measuring slepton spin at the LHC.
The paper is organised as follows. In section 2 we introduce an angular variable

cos θ∗ll, and show that it is sensitive to the production polar angle in slepton pair pro-
duction. Our supersymmetric test points, Monte Carlo event generator and detector

simulation are described in section 3. In section 3.1 we identify an event selec-
tion and demonstrate that it can cleanly isolate the signal process. Results showing
the experimentally-measurable angular distributions and luminosity requirements are

shown in section 3.2. In section 4 we discuss the main systematic uncertainties and
some methods for reducing them. Our conclusions are presented in section 5.

2. Angular distributions, and cos θ∗ll

In this paper we investigate the supersymmetric process,

qq̄ → Z0/γ → !̃+!̃− → χ̃0
1!

+ χ̃0
1!

− , (2.1)

2

where throughout this paper ! is understood to mean electron or muon only. Since
sleptons are scalars, the angluar distribution for Drell-Yan slepton pair production

is
(

dσ

d cos θ∗

)

SUSY

∝ 1 − cos2 θ∗ (2.2)

where θ∗ is the angle between the incoming quark in one of the protons and the pro-
duced slepton. Slepton pair production via gauge boson fusion [8] is not considered
here, but it would become important for sleptons with masses greater than about

300 − 400 GeV. For comparison we use a pure phase space distribution,
(

dσ

d cos θ∗

)

PS

∝ constant . (2.3)

The phase space distribution does not correspond to any physical model, but does
provide a convenient benchmark against which to compare the SUSY distribution.

We also compare against the UED equiv-
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Figure 1: Production angular distribu-

tions, dp
d cos θ∗ , for scalar sleptons (SUSY),

spin-1
2KK leptons UED and pure phase

space (PS). The mass spectrum for the

UED distribution is that of SUSY point S5

(see section 3).

alent of eq. 2.1,

qq̄ → Z0/γ → !+
1 !−1 → γ1 !+γ1 !− . (2.4)

which has the characteristic distribution
for spin-1

2 KK leptons:

(

dσ

d cos θ∗

)

UED

∝ 1+

(

E2
"1
− M2

"1

E2
"1

+ M2
"1

)

cos2 θ∗ ,

(2.5)
where E"1 and M"1 are the energy and mass
respectively of the KK leptons in the center-

of-mass frame. The three different pro-
duction angular distributions are shown graph-

ically in fig. 1.
The different angular distributions pro-

vide a mechanism for determining the heavy

particle spin. Excited leptons (selptons or
KK-leptons) which are produced significantly above threshold will have decays which

are boosted in the lab frame. This means that a pair of leptons from slepton decays
(eq. 2.2) should be on average less widely separated in polar angle than the pair from

phase space (eq. 2.3) or KK-lepton pair production (eq. 2.5).
It has already been suggested [9, 10] that the final state lepton angular distri-

butions could be used at a future high-energy e+e− linear collider to distinguish

between UED and SUSY models. With a proton-proton collider such as the LHC,
it is not possible to measure the lepton angluar distributions in the parton-parton

center-of-mass frame – the initial z-momenta of the incoming partons are not known,
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Figure 2: 2-dimensional plots showing the correlation between our dilepton angular vari-

able, cos θ∗ll, (y-axes) and the cosine of the production angle of the parent sleptons (a) or

KK-leptons (b) in the center of mass frame (x-axes). Darker regions correspond to larger

numbers of events, the normalisation being arbitrary. The mass spectrum is that of SUSY

point S5.

and because invisible particles are produced, the center of mass frame of the parton-
parton interaction cannot be recovered from the final state.

To make a spin measurement at a hadron collider, we propose a variable which

is a function only of the pseudorapidity difference between the final state leptons,
∆η!+!− . The advantage of differences in rapidity is that they are independant of the

longitudinal boost. The leptons are highly relativistic, so we can use their pseudo-
rapidities as a very good approximation to their true rapidities. By using a function

only of ∆η!+!−, we no longer have to face the problem of determining the center-
of-mass frame along the beam direction. The inter-lepton pseudorapdity difference,
∆η!+!− , is also sensitive to the slepton production angle. The reasons are the same

reasons as for the lepton angular distributions – the leptons ‘inherit’ some knowledge
of the rapidity of their slepton or KK-lepton parents. Lepton pairs from slepton pair

decay will therefore be on average less separated in pseudorapidty than those coming
from particles produced according to the corresponding phase-space or Kaluza Klein
production angular distributions.

To allow a more direct comparison with the production distributions, rather than
using ∆η!+!− directly, we propose the angular variable

cos θ∗ll ≡ cos
(

2 tan−1 exp(∆η!+!−/2)
)

= tanh(∆η!+!−/2) . (2.6)

This variable, like ∆η!+!−, has the benefit of being longitudinally boost invariant,

but also has a simpler geometrical interpretation: cos θ∗ll is the cosine of the polar
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Figure 2: 2-dimensional plots showing the correlation between our dilepton angular vari-

able, cos θ∗ll, (y-axes) and the cosine of the production angle of the parent sleptons (a) or

KK-leptons (b) in the center of mass frame (x-axes). Darker regions correspond to larger

numbers of events, the normalisation being arbitrary. The mass spectrum is that of SUSY

point S5.

and because invisible particles are produced, the center of mass frame of the parton-
parton interaction cannot be recovered from the final state.

To make a spin measurement at a hadron collider, we propose a variable which

is a function only of the pseudorapidity difference between the final state leptons,
∆η!+!− . The advantage of differences in rapidity is that they are independant of the

longitudinal boost. The leptons are highly relativistic, so we can use their pseudo-
rapidities as a very good approximation to their true rapidities. By using a function

only of ∆η!+!−, we no longer have to face the problem of determining the center-
of-mass frame along the beam direction. The inter-lepton pseudorapdity difference,
∆η!+!− , is also sensitive to the slepton production angle. The reasons are the same

reasons as for the lepton angular distributions – the leptons ‘inherit’ some knowledge
of the rapidity of their slepton or KK-lepton parents. Lepton pairs from slepton pair

decay will therefore be on average less separated in pseudorapidty than those coming
from particles produced according to the corresponding phase-space or Kaluza Klein
production angular distributions.

To allow a more direct comparison with the production distributions, rather than
using ∆η!+!− directly, we propose the angular variable

cos θ∗ll ≡ cos
(

2 tan−1 exp(∆η!+!−/2)
)

= tanh(∆η!+!−/2) . (2.6)

This variable, like ∆η!+!−, has the benefit of being longitudinally boost invariant,

but also has a simpler geometrical interpretation: cos θ∗ll is the cosine of the polar
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Figure 5: Distribution of events in the (η+, η−) plane for two points with similar cross-section
and kinematics but different spins, with one and two sigma contours. At left: t′ fermion,
mass 700 GeV, N scalar, mass 400 GeV, (σ+, σ−) = (1.31, 1.01); at right, t′ scalar, mass 500
GeV, N fermion, mass 150 GeV, (σ+, σ−) = (1.52, 0.90). In the lighter (t′ scalar) case, there
is on average more boost, so the ellipse is stretched more along the η+ axis.

standard deviations σ+ and σ−, maximizing −2 logL where L =
∏

i P (η+i, η−i) with

P (η+, η−) =
C

σ+σ−

exp

(

−
η2

+

2σ2
+

−
η2
−

2σ2
−

)

. (5.1)

The likelihood fit was performed using Minuit [30]. Minuit returns errors on the fitted
parameters σ+ and σ−. These errors should scale like 1/

√
Nevents, and this is consistent with

the samples of unweighted events we have analyzed. The coefficient, as reported by Minuit, is
approximately 1.2 We view the Minuit errors as approximately describing the experimental
error after a given number of events, though other effects must be considered. (For instance,
finite η resolution will have some effect, although if the smearing of the η’s of the two tops
is uncorrelated it does not seem that it should pose major problems for our fit.)

As an example, consider the degeneracy of t′ fermion at 700 GeV and N scalar at 400
GeV with t′ scalar at 500 GeV and N fermion at 150 GeV. The corresponding fitted values of
σ+ are 1.31 and 1.52 respectively. The cross section (with all branching ratios and efficiencies
taken into account) is about 2.0 fb. Ignoring background (which is a factor of 5 smaller),

2Obtaining large numbers of unweighted events to systematically explore the error on various random
subsamples is computationally intensive, but on a variety of samples up to 7,000 events we obtain error
estimates ranging from 0.93/

√
Nevents to 1.04/

√
Nevents.
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Conclusions

• LHC is finally coming.  Particle physics is entering 
an exciting new era.

• New physics beyond SM is expected to be 
discovered, but will we know what it is?

• Many candidates for new physics have similar 
signatures at LHC (e.g., SUSY, UEDs, T-parity).

• More complete MC tools are needed to study and 
distinguish various possibilities.

• A lot of work remains to be done!


