
pandora for
BSM processes

M. E. Peskin
MC4BSM March 2006

in collaboration with
Michael Davenport and

Joshua Ruderman

The goal of this meeting is to discuss methods by which
theorists can create event generators for new, even
arbitrary, models of physics beyond the Standard Model.

I thought about this problem in connection with the Linear
Collider studies of ‘98-‘02 and began developing a solution:

 pandora

pandora has been dormant since 2002. But, hopefully, this
solution is relevant to LHC physics. Some of my students
and I are trying now to revive it.

The goals of pandora are to provide

 a toolbox for creating event generators for general physics
 processes

 extensible code that makes it easy to change
 particle couplings and decay chains

 full accounting of (longitudinal) polarization

pandora is not intended to achieve precision. It seems
pointless to compete with the huge efforts devoted to
precision SUSY and Higgs tools. We hope that pandora will
help people fill in the gaps in the major tools.

• workflow of pandora event generation

• process class

• inheritance

• application:

• decay class

• application:

• complexdecay class

• to-do list

e+e− → ff

τ̃
−

a → N
0

j τ
−

pandora proper is a parton-level event generator written in
C++, with an interface to PYTHIA hadronization.

The underlying structure is a Monte Carlo integrator:

In principle, any algorithm could be used to perform the
integral; currently, we use VEGAS.

A pandora class P has methods

 LE = P.getEvent(); LE = P.getEvent(weight);

where LE is constructed as an instance of an LEvent class that
includes parton identities, 4-vectors, and color connections.

σ =

∫
dNx f({xi})

dσ

d{xj}

A separate program pandora_pythia, by Masako Iwasaki,
writes LEvents to an external file and then stuffs them into
PYTHIA for parton shower generation and hadronization.

pandora_pythia calls TAUOLA to generate longitudinally-
polarized decays.

pandora does not yet implement the Les Houches accord.
Because pandora was produced for e+e- physics, not much
thought was given to complicated color final states. Also,
initial-state protons were not included. We are working now
to correct this.

Polarization of , b was left out of the Les Houches accord,
but this was an oversight. Can future releases of PYTHIA
allow and even treat polarization effects ?

τ

τ

Parton reactions are described in pandora by a process class that is
designed to compute cross sections according to

and to create the final state as 4-vectors in an LEvent.

 = canonical prefactor

 = helicity-dependent production amplitude

 = helicity-dependent decay amplitude

At present, these amplitudes are not computed automatically. You
compute them by hand; pandora does the rest.

dσ

d{xj}
= g(s)

∣
∣
∣
∣M(e−(h1)e

+(h2) → A(hA)B(hB) · · ·)

·D(A(hA) → FA)D(B(hB) → FB) · · ·
∣
∣
2

(1)

D

M

g(s)

FAFB · · ·

C++ contains a mechanism for generalization called inheritance.
Pandora uses this mechanism extensively.

C++ classes can be set up in a hierarchy of parent and daughter
classes. A daughter class inherits the functionality of the parent
class. New functions can be added. Specific functions, called
virtual functions, can be modified.

e.g., in pandora,

 eetottbar is a daughter class of twototwomm

The parent class handles the kinematics, the production of the
cross section integrand, and the setup of 4-vectors and labels in
the generated event.

To build eetottbar, we need to compute the correct production
amplitudes and to call out the final-state color connections.

The production amplitude is computed by a virtual function of the
parent class. So it is possible to modify or overwrite this function to
change the physics without modifying the setup of the final state.

e.g., in pandora, include Z-primes in with

 class eetoqqbarwschannel : public eetoqqbar

for which the constructor is eetoqqbarwschannel(schannel & SC);

The only method modified is the one that computes the production
amplitudes.

An schannel is a data structure that describes , , arbitrarily
many Z-primes, and a contact interaction.

Some specific predefined schannel classes are:

 sequentialZprime, EsixZprime

e
+
e
−

→ qq

γ Z

For supersymmetry, pandora defines a separate class called
SUSYspectrum that contains the basic data for the SUSY
parameters:

 values of 24 weak-scale MSSM parameters

 a function fill() to compute all masses and couplings
 from these parameters (at the tree level)

 functions to input the MSSM parameters from various
 small parameter sets (e.g. mSUGRA)

 a function to input the spectrum parameters from ISAJET
 output

gaugino masses, mu, and A parameters can be complex,
incorporating CP violation.

The process classes that creates a massive particle contain a
pointer to a decay class for that particle.

pandora provides parent classes for decays that compute the decay
kinematics and set up the 4-vectors of the final state.

pandora also supplies a default nodecay class.

To create a daughter decay class, one supplies the decay amplitude
for the particle at rest, as a function of the spin orientation .

The process classes combine these polarized decay amplitudes with
helicity-dependent production amplitudes. To create events, they
accept the 4-vectors from the decay classes and boost and rotate
these to the appropriate frame and orientation.

S
3

In using helicity amplitudes, it is necessary to carefully match the
conventions used to define production and decay amplitudes with
definite polarizations states.

pandora uses an ideosyncratic but definite convention (available
upon request).

We intend to make available a library of scalar products from
which 2->2 production processes and 1->2 and 1->3 decays can be
assembled.

pandora also contains a library of integrals over phase space
times Breit-Wigner functions, to be used in computing total
widths to populate decay tables.

The decay classes that create a massive particle contain a
pointer to a decay class for that particle.

.. and so on (using the narrow resonance approximation
for each intermediate state)

For a decay chain of arbitrary length, the full amplitude
and the 4-vectors in the final state are built up recursively.

Some examples of decay classes for SUSY are:

general decay for 1st and 2nd generation,

 sftoNfdecay(ID, a, j, finalID, particle, color, S, sfmass, GNfj);

depending on quantum numbers, a SUSY spectrum data class,
and the scalar decay amplitude.

specific decays for 3rd generation,

 stautoNtauLdecay(a, j, particle, S);
 stautoNtauRdecay(a, j, particle, S);

f̃(a) → Ñ0

j fL

τ̃(a) → Ñ
0

j τ
−

L,R

To handle particles with multiple decay channels, pandora
contains a parent class complexdecay

This contains a list of pointers to decay classes, a mechanism
to query these classes and request their partial widths, and a
mechanism to choose a given decay randomly according to
the decay table constructed from these partial widths.

For example, for the b quark superpartners,

 sbdecay(a, particle, S)

is a complexdecay that controls a list of 15 decay classes.

Current pandora to-do list:

inclusion of e+e- -> SUSY proceses and decays,
 and testing of the underlying structure

 M. Davenport has almost completed this

inclusion of UED by generalization of the SUSY classes

 J. Ruderman has constructed a UED spectrum data class,
 and some simple e+e- processes and decays

construction of beam (parton density) classes for pp collisions

implementation of Les Houches accord, full color connection
structure in LEvent and pandora_pythia

