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Hadron-hadron processes

In hard hadron-hadron scattering, constituent partons from each incoming hadron

interact at short distance (large momentum transfer Q2).
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For hadron momenta P1, P2 (S = 2P1 · P2), form of cross section is

σ(S) =
X

i,j

Z

dx1dx2Di(x1, µ2)Dj(x2, µ2)

× σ̂ij(ŝ = x1x2S, αs(µ
2), Q2/µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross section for parton

types i, j.

Notice that factorization scale is in principle arbitrary: affects only what we call part

of subprocess or part of initial-state evolution (parton shower).

Unlike e+e− or ep, we may have interaction between spectator partons, leading to

soft underlying event and/or multiple hard scattering.
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Parton Distributions

Parton distributions as extracted from Deep Inelastic scattering at low Q2.
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qq̄ → µ+µ−

In the naive parton model, the cross section σAB for producing such a pair in the

collision of beam A and target B is obtained by simply weighting the subprocess cross

section σ̂ for qq̄ → +− with the parton distribution functions fq(x) and fq̄(x) (extracted

from deep inelastic scattering), and summing over all quark-antiquark combinations in

the beam and target:

σAB =
X

q

Z

dx1dx2 fq(x1)fq̄(x2) σ̂qq̄→l+l− . (1)

Thus we wish to calculate the cross section for the process

q(p1) + q̄(p2) → µ−(p3) + µ+(p4)

which we will insert in the formula
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Phase space

PS(2) =

Z

d4p3

(2π)3
d4p4

(2π)3
δ(p2

3) δ(p2
4) (2π)4δ4(p1 + p2 + p3 + p4)

In the centre of mass system

p1 =

√
s

2
(1, 0, 0, +1)

p2 =

√
s

2
(1, 0, 0,−1)

p3 =

√
s

2
(1, 0, +sin θ∗, +cos θ∗)

p4 =

√
s

2
(1, 0,− sin θ∗,− cos θ∗)

Hence we have that

s = (p1 + p2)2

t = (p1 − p3)2 = − s

2
(1 − cos θ∗)

u = (p1 − p4)2 = − s

2
(1 + cos θ∗)
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Performing p4 integral

PS(2) =
1

4π2

Z

d4p3 δ(p2
3) δ((p1 + p2 − p3)2)

=
1

4π2

Z

d3p3

2E3
δ((s − 2

√
sE3))

=
1

16π2
√

s

Z

|~p3|dE3 d cos θ∗ dφ δ((

√
s

2
− E3))

=
1

16π

Z +1

−1
d cos θ∗
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Feynman rules for QCD
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Matrix element

(−ie)2Qq v̄(−p2)γ
µu(p1)

−igµν

s
ū(p3)γνv(−p4)

Squaring and summing (averaging) over final (initial) spins we get

X

spins
|M |2 =

X

spins

e4Q2
q

s2
ū(p1)γ

αv(−p2) v̄(−p2)γ
µu(p1)

v̄(−p4)γ
αu(p3) ū(p3)γ

µv(−p4)

=
1

4

e4Q2
q

s2
Tr[γα 6p2γµ 6p1] Tr[γα 6p3γµ 6p4]
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Matrix element (continued)

Now using the result

Tr[γαγβγδγφ] = 4
h

gαβgδφ + gαφgβγ − gαδgβφ
i

we obtain

Tr[γα6p2γµ 6p1] Tr[γα 6p3γµ 6p4] = +32(p1.p3 p2.p4 + p1.p4 p2.p3)

so that
X

spins
|M |2 = 2e4Q2

q

t2 + u2

s2
= e4Q2

q(1 + cos2 θ∗)
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Putting it all together

dσ =
1

N

1

2s

1

16π
d cos θ∗ e4Q2

f (1 + cos2 θ∗)

=
1

N

πα2Q2
f

2s

Z +1

−1
d cos θ∗ (1 + cos2 θ∗)

σ =
1

N

4πα2Q2
f

3s

Note that we have added a factor of 1/N where N is the number of colors (A red quark

can only annihilate with an anti-red quark)
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Lepton pair production

Inverse of e+e− → qq̄ is Drell-Yan process. At O(α0
s), mass distribution of lepton

pair is given by

dσ̂

dM2
(qq̄ → γ∗ → l+l−) =

4πα2

3ŝ

1

3
Q2

q δ(M2 − ŝ)

? Factor of 1/3 = 1/N instead of 3 = N because of average over colours of

incoming q.
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In higher orders vertex corrections (a) have M2 = ŝ, gluon emission (b) and QCD

Compton (c) diagrams give M2 < ŝ.

Rapidity of lepton pair in overall c.m. frame is

y ≡ 1

2
ln

„

p0 + p3

p0 − p3

«

=
1

2
ln

„

x1

x2

«

where pµ = pµ
1 + pµ

2 .

W± boson production is similar, except sensitive to different parton distributions,
e.g.

ud̄ → W+ → l+νl
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Parton luminosity

parton luminosity is determined by the parton distribution functions, fi(x1, µ2) and

fj(x2, µ2).

the available centre-of-mass energy-squared of the parton-parton collision, ŝ, is

less than the overall hadron-hadron collision energy, s, by a factor of x1x2 ≡ τ .

Define differential parton luminosities

τ
dLij

dτ
=

1

1 + δij

Z 1

0
dx1dx2

×
h

`

x1fi(x1, µ2) x2fj(x2, µ2)
´

+
`

1 ↔ 2
´

i

δ(τ − x1x2).

case of identical partons.

We now assume that σ̂ depends only on ŝ.

σ(s) =
X

{ij}

Z 1

τ0

dτ

τ

"

1

s

dLij

dτ

#"

ŝσ̂ij

#

,
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Other luminosities
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Factorization of the cross section
Why does the factorization property hold and when it should fail?

For a heuristic argument Consider the simplest hard process involving two hadrons

H1(P1) + H2(P2) → V + X.

Do the partons in hadron H1, through the influence of their colour fields, change

the distribution of partons in hadron H2 before the vector boson is produced? Soft

gluons which are emitted long before the collision are potentially troublesome.

A simple model from classical electrodynamics. The vector potential due to an

electromagnetic current density J is given by

Aµ(t, ~x) =

Z

dt′d~x′ Jµ(t′, ~x′)

|~x − ~x′| δ(t′ + |~x − ~x′| − t) ,

where the delta function provides the retarded behaviour required by causality.
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Consider a particle with charge e travelling in the positive z direction with constant

velocity β. The non-zero components of the current density are

Jt(t′, ~x′) = eδ(~x′ − ~r(t′)) ,

Jz(t′, ~x′) = eβδ(~x′ − ~r(t′)), ~r(t′) = βt′ẑ,

ẑ is a unit vector in the z direction. At an observation point (the supposed position of

hadron H2) described by coordinates x, y and z, the vector potential (after performing

the integrations using the current density given above) is

At(t, ~x) =
eγ√

[x2 + y2 + γ2(βt − z)2]

Ax(t, ~x) = 0

Ay(t, ~x) = 0

Az(t, ~x) =
eγβ√

[x2 + y2 + γ2(βt − z)2]
,

where γ2 = 1/(1 − β2). Target hadron H2 is at rest near the origin, so that γ ≈ s/m2.
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Note that for large γ and fixed non-zero (βt− z) some components of the potential

tend to a constant independent of γ, suggesting that there will be non-zero fields

which are not in coincidence with the arrival of the particle, even at high energy.

However at large γ the potential is a pure gauge piece, Aµ = ∂µχ where χ is a

scalar function

Covariant formulation using the vector potential A has large fields which have no

effect.

For example, the electric field along the z direction is

Ez(t, ~x) = F tz ≡ ∂Az

∂t
+

∂At

∂z
=

eγ(βt − z)

[x2 + y2 + γ2(βt − z)2]
3
2

.

The leading terms in γ cancel and the field strengths are of order 1/γ2 and hence

of order m4/s2. The model suggests the force experienced by a charge in the

hadron H2, at any fixed time before the arrival of the quark, decreases as m4/s2.
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W rapidity asymmetry

The W and Z rapidity distributions are calculated in exactly the same way as for

Drell-Yan lepton pair production The predicted distributions for W±, Z production in pp̄

collisions at
√

s = 1.8 TeV. Here we have defined y > 0 to be the direction of the

incoming proton. Neglecting sea quark contributions to the cross section, a W+ is

obtained from the annihilation of a (valence) u quark from the proton and a (valence) d̄
quark from the antiproton. Since u quarks in a proton are in general moving faster than d

quarks, the W+ bosons are produced preferentially in the proton direction. Likewise,

W− bosons are produced preferentially in the antiproton direction.
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In fact the W rapidity asymmetry,

AW (y) =
dσ(W+)/dy − dσ(W−)/dy

dσ(W+)/dy + dσ(W−)/dy
,

provides a very sensitive measure of the relative shape of the u and d quark distributions

In particular, AW is strongly correlated with the slope of d(x)/u(x). We can see this from

a simple model calculation in which only valence quarks contribute to the production

cross section. Then we have (adopting the notation u(x) = fu(x), using the fact that

up(x) = ūp̄(x) etc., and suppressing scale dependence)

AW (y) ≈ u(x1)d(x2) − d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)
=

R(x2) − R(x1)

R(x2) + R(x1)
,

where R(x) = d(x)/u(x) and

x1 = x0 exp(+y) , x2 = x0 exp(−y) , x0 = MW /
√

s .

For small y we can write x1,2 = x0 ± yx0 + . . . and

R(x1,2) = R(x0) ± yx0R′(x0) + . . ., so that

AW (y) ≈ −yx0
R′(x0)

R(x0)
.
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The asymmetry is therefore predicted to be linear in y for small y, with a coefficient

proportional to the slope of d(x)/u(x) evaluated at x = MW /
√

s (and µ2 ∼ M2
W ).

Unfortunately the W rapidity is difficult to measure accurately because of the undetected

neutrino in the final state. What can be measured with high precision is the closely

related charged lepton asymmetry Al(y). However the inclusion of the leptonic decay in

the measurement provides an additional complication: because of the V −A structure of

the weak charged current, the charged lepton is not produced isotropically in the W rest

frame. In particular, for the process

d(pd) + ū(pu) → e−(pe) + ν̄(pν) ,

where the momentum labels are indicated in brackets.

X

|M(dū → e−ν̄)2 = 16
“√

2GF M2
W

”2
|Vud|2

× (pu · pe)2

((pu + pd)2 − M2
W )2 + M2

W Γ2
W

.

Likewise, for the charge-conjugate process ud̄ → e+ν we have exactly the same

expression, where now pu is the momentum of the incoming u quark etc.
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If we define θ∗ to be the e+(e−) polar angle of emission in the W+(W−) rest frame,

measured with respect to the direction of the incident p̄(p), and if we assume that all

incoming quarks (antiquarks) are constituents of the proton (antiproton), then for the

above matrix elements we have

(pu · pe)
2 =

M4
W

16
(1 + cos θ∗)2 .

The cross section is therefore maximal when the outgoing electron (positron) moves in

the direction of the incoming proton (antiproton). In fact there is a simple angular

momentum argument for this. In the Standard Model, the W couples to negative helicity

fermions and positive helicity antifermions. Angular momentum conservation therefore

requires the outgoing fermion (electron) to preferentially follow the direction of the

incoming fermion (quark), which is usually the direction of the incoming proton. This is in

the opposite sense to the W± production asymmetry and so the charged lepton

asymmetry is smaller than that of the W boson itself.
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As an example of how well the lepton asymmetry can discriminate between parton

distributions, shows data from the CDF collaboration compared to the predictions using

various sets of parton distributions. In principle, all of these describe deep inelastic

structure function data equally well, and so the lepton asymmetry measurement provides

an important additional constraint on the distributions in global fits
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W mass measurement
In the rest frame of the decaying W , the energy of the charged lepton is MW /2. It

can be used to measure the W mass.

transverse momentum of the electron, also carries information on MW .

in the W rest frame the angular distribution of the electron is

1

σ

dσ

d cos θ∗
=

3

8
(1 + cos2 θ∗) ,

If the W has zero transverse momentum

cos θ∗ =

 

1 − 4p2
T e

M2
W

! 1
2

,

so that

1

σ

dσ

dp2
T e

=
3

M2
W

 

1 − 4p2
T e

M2
W

!− 1
2
 

1 − 2p2
T e

M2
W

!

.
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The distribution is strongly peaked at pT e = MW /2 (the Jacobian peak)

to include the missing (neutrino) transverse momentum define the transverse mass

M2
T = 2|pT e||pT ν |(1 − cos ∆φeν) .

At leading order (qq̄′ → W → eν) and in the absence of any quark transverse

momentum, we have |pT e| = |pT ν | = p∗, ∆φeν = π, and so MT = 2|pT e|. The

transverse mass distribution therefore also has a Jacobian peak, at MT = MW .

the transverse mass distribution is that it is less sensitive to the transverse
momentum (pW

T ) of the W boson. If pW
T is small, the transverse momenta of the

leptons in the laboratory and W centre-of-mass frames are related by a simple

Galilean transformation:

pT e = p∗ +
1

2
pW

T

pT ν = −p∗ +
1

2
pW

T .

It is straightforward to show that, to leading order in pW
T , the transverse mass is

unchanged by such a transformation.
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Current results
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mW  [GeV]
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χ
2
/DoF: 0.3 / 1

pp
−
-colliders 80.454 ± 0.059

LEP2 80.412 ± 0.042

Average 80.426 ± 0.034

NuTeV 80.136 ± 0.084

LEP1/SLD 80.373 ± 0.033

LEP1/SLD/mt 80.378 ± 0.023
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W and Z transverse momentum distributions
most W and Z bosons (collectively denoted by V ) are produced with relatively

little transverse momentum, pT � MV . However, part of the total cross section

corresponds to the production of large transverse momentum bosons. The

relevant mechanisms are the 2 → 2 processes qq̄ → V g and qg → V q.

X

|Mqq̄′→Wg|2 = παs

√
2GF M2

W |Vqq′ |2

× 8

9

t2 + u2 + 2M2
W s

tu
,

X

|Mgq→Wq′ |2 = παs

√
2GF M2

W |Vqq′ |2

× 1

3

s2 + u2 + 2tM2
W

−su
,

with similar results for the Z boson. The transverse momentum distributions
dσ/dp2

T are obtained by convoluting these matrix elements with parton

distributions in the usual way.
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Data on the pT distribution of the W boson compared with the

next-to-leading-order QCD prediction.
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The poles at t = 0 and u = 0 in the matrix elements cause the leading-order theoretical

cross section to diverge as pT → 0. The leading behaviour at small pT comes from the

emission of a soft (kµ → 0) gluon in the process qq̄ → V g. Schematically (with

M = MW or MZ )

dσR

dp2
T

= αs

 

A
ln(M2/p2

T )

p2
T

+ B
1

p2
T

+ C(p2
T )

!

,

where A and B are calculable coefficients and C is an integrable function.
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Virtualcorrections to qq̄ → V only contribute at pT = 0, dσV /dp2
T ∝ δ(p2

T ), and their

contribution to the differential distribution essentially introduces a ‘plus prescription’ on

the singular parts of the gluon emission cross section:

dσR+V

dp2
T

= αs

0

@A

"

ln(M2/p2
T )

p2
T

#

+

+ B

"

1

p2
T

#

+

+ C(p2
T )

1

A ,

such that the integrated contribution is finite, a

Z

dp2
T

dσR+V

dp2
T

= αs

Z

dp2
T C(p2

T ) .

aRecall that
∫ 1
0 dx[f(x)]+ = 0.
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An important ingredient missing from the above derivation is the non-perturbative

contribution to the pT distribution. At very small pT , the intrinsic transverse motion of the

quarks and gluons inside the colliding hadrons cannot be neglected. This

non-perturbative contribution has to be combined with the perturbative large pT tail. A

simple convolution in transverse-momentum space of the perturbative distribution with

non-perturbative intrinsic kT distributions is one method of doing this.

For pT � 〈kT 〉 a purely perturbative approach should be adequate. However, if at the

same time pT � M then higher-order terms in the perturbation series cannot be

neglected. In particular, the emission of multiple soft gluons becomes important and the

leading contributions at each order have the form

1

σ

dσ

dp2
T

' 1

p2
T

"

A1αs ln
M2

p2
T

+ A2α2
s ln3 M2

p2
T

+ . . .

+ Anαn
s ln2n−1 M2

p2
T

+ . . .

#

,

where the Ai are calculable coefficients of order unity. The higher-order terms in the

series are evidently important when

αs ln2 M2

p2
T

> 1 .

Taking into account the relative magnitude of the An coefficients, this corresponds to pT

values less than 10 − 15 GeV.
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Indeed the resummed double leading logarithms give

1

σ

dσ

dp2
T

' d

dp2
T

exp

 

−αss

2π
CF ln2 M2

p2
T

!

,

which vanishes at pT = 0.

the production of a W or Z boson with pT ≈ 0 does not require that all emitted

gluons are soft, merely that their vector transverse momentum sum is small.

the double-leading-logarithm result omits contributions from the multiple emission

of soft gluons with kT i ∼ pT and
P

i
~kT i = ~pT . Such additional contributions ‘fill

in’ the dip at pT ≈ 0.
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A more complete analysis of the small pT distribution requires proper treatment of

transverse momentum conservation in multiple gluon emission. This is achieved by

introducing the two-dimensional impact parameter vector ~b, which is the Fourier

conjugate of ~pT , and writing

δ(2)

 

n
X

i=1

~kT i − ~pT

!

=
1

(2π)2

Z

d2b e−i~b·~pT

n
Y

i=1

ei~b·~kT i ,

for the emission of n soft gluons. The Sudakov form factor then appears in b-space after

resumming large ln(b2M2) logarithms.

a complete formalism has been developed for taking account of all large

ln(M2/p2
T ) logarithms in the perturbation series at small pT .
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In particular, the result for the small pT (Z) distribution is

dσ

dp2
T

'
X

q

σqq̄
0

1

2

Z ∞

0
db b J0(bpT ) exp(−S(b, MZ))

Z 1

0
dx1 dx2 δ(x1x2 − M2

Z

s
)
ˆ

q(x1, (b0/b)2) q̄(x2, (b0/b)2) + (q ↔ q̄)
˜

,

where

σqq̄
0 = π

√
2GF M2

Z(V 2
q + A2

q)/(3s)

and b0 = 2 exp(−γE) (γE = 0.5772 . . . is the Euler constant). The Sudakov form factor

in b-space is exp(−S) where

S(b, Q) =

Z Q2

(b0/b)2

dq2

q2

»

ln
Q2

q2
A(αs(q

2)) + B(αs(q
2))

–

,

A(αs) =
∞
X

n=1

“αs

2π

”n
A(n) ,

B(αs) =
∞
X

n=1

“αs

2π

”n
B(n) .

The A(n) and B(n) coefficients for n = 1, 2 have been calculated.
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The small-pT distribution can, in principle, be used as a test of the resummed QCD

perturbation series. In practice, however, there are some difficulties — for example,

some non-perturbative cut-off or smearing must be included to make the b integral

converge at large b and to avoid infra-red problems from evaluating αs and the parton

distributions at low scales. This introduces a significant theoretical uncertainty.

The theoretical prediction incorporates both the resummed higher-order

contributions at small pT , and the exact next-to-leading-order correction at large
pT .
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Kinematics of Jets
Choose the final state variables which transform simply under longitudinal boosts,

(rapidity y, the transverse momentum pT ,azimuthal angle φ, transverse mass

mT =
q

p2
T + m2.

pµ = (E, px, py, pz)

=
`

mT cosh y, pT sin φ, pT cos φ, mT sinh y
´

,

y =
1

2
ln

 

E + pz

E − pz

!

,

Rapidity is additive under longitudinal boosts. Rapidity differences are boost

invariant.

Pseudorapidity variable η, coincides with the rapidity in the m → 0 limit.

η = − ln tan(θ/2) ,

Since E is directly measured in the calorimeter we also use

ET = E sin θ,

Examples of (Lego) plots of ET vs. pseudorapidity and azimuth.

These events are four jet events from CDF.
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Lego plots

(a) (b)

(c) (d)
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Jet algorithms

From previous plots we see that jets exist as localized clusters of energy.

There is no ‘best’ jet definition, although there are better and worse.

Good jet definitions are

? Fully specified

? Theoretically well-behaved

? Detector independent

? Order independent

For hadron-hadron collisions, the most commonly used definition is of the cone

type: a jet is defined to be in the directions which maximizes the transverse energy

ET in a ‘cone’ of radius R, where

R =
q

(∆η)2 + (∆φ)2 .

In the two-dimensional η, φ plane, curves of constant R are circles around the axis

of the jet.

Cone jet has many problems, e.g. jet classification is not stable under emission of

soft radiation.

In addition, since a global maximization is too costly in computer time,

maximization is done with respect to a seed direction. This introduces other
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kT -jet algorithm

The basic idea is of the kT jet algorithm to use the transverse momentum rather

than the invariant mass as clustering parameter.

Below is an event classified as a three jet event by the mass (JADE) clustering

algorithm

For a more natural jet classification we use, instead of using yij = M2/s

yij = 2 min{E2
i , E2

j }(1 − cos θij)/s

∼ k2
T ij/s for θij → 0

Theoretical benefits stem from the fact that soft hadrons produced coherently by

the fragmentation of hard partons should be assigned to the jet nearest in angle.

Jets have a natural radius depending on the hardness of the jet itself.
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Tevatron Run II Jet algorithm
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Results on W+jets

One of the most important Standard Model processes in high-energy

hadron-hadron collisions is the production of a W or Z with accompanying

hadronic (quark or gluon) jets.

Most ‘new physics’ processes, for example the production of heavy quarks, Higgs

bosons and supersymmetric particles, can be mimicked by the production of vector

bosons in association with jets.

decompose the total W cross section into its multijet components:

σW = σW+0j + σW+1j + σW+2j + σW+3j + . . .

where, schematically,

σW+0j = a0 + αsa1 + α2
sa2 + . . .

σW+1j = αsb1 + α2
sb2 + . . .

σW+2j = α2
sc2 + . . .

. . . .

The ai, bi, ci, ... coefficients in these expansions are in general functions of the

jet-definition parameters, in particular the cone size used to cluster the partons

into jets, and the transverse momentum, rapidity and separation cuts imposed on

the jets/clusters.

The leading contributions to the cross sections, a0, b1, c2, . . ., can be calculated

from the matrix elements for the ‘tree-level’ parton processes:
QCD and Collider PhysicsLecture II:Vector boson production – p.40/49



 njets≥
0 1 2 3 4 5

E
v
e
n

ts

10
-1

1

10

10
2

10
3

|<2jet
η   |

>15 GeVjet
TE

>20 GeVjet
TE

>25 GeVjet
TE

DØ Run 2 Preliminary

stat. errors. only

Number of jets in W+jets
1 2 3 4

N
u

m
b

e
r 

o
f 

ta
g

g
e

d
 e

v
e

n
ts

0

5

10

15

20

25

30

35

40
mistags

Wbb
Wcc

non-W

Wc

ττ→WW,WZ,Z

Single top

σ 1±Tot bkgd 

)
-1

Data (57.5 pb

CDF II preliminary

≥

QCD and Collider PhysicsLecture II:Vector boson production – p.41/49



Vector boson + n jets

Next-to-leading-order corrections are at present known only for the W + 0, 1 and 2

jet production cross sections

results for LHC
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Results on Z + jet production
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Vector boson pair production in e+e−

gauge cancellations amongst the couplings have an enormous effect on the

high-energy behaviour of WW scattering.

consider the process e−e+ → W−W+

The outgoing vector bosons can have longitudinal or transverse polarizations.

the longitudinal polarization is responsible diagram-by-diagram for the leading

behaviour at high energy.

We choose a frame in which the outgoing momenta are directed along the z axis.

Then the polarization vectors are

εL(q±) =
“ q

MW
, 0, 0,± E

MW

”

∼ 1

MW

“

q± − M2
W

2E2
q∓
”

.

the individual diagrams will lead to amplitudes which grow like E2.QCD and Collider PhysicsLecture II:Vector boson production – p.44/49



If we are only interested in the leading terms we may contract each vector boson with the

leading term. The contribution of diagram (a) is

M =
(−igW )2

8
v̄(−p+)6ε(q+)(1 − γ5)

i

6p− − 6q−
6ε(q−)(1 − γ5)u(p−) .

Inserting the leading term for the polarizations and dropping non-leading terms, we

obtain

M = −i
(−igW )2

8M2
W

v̄(−p+)(6q+ − 6q−)(1 − γ5)u(p−) .

The contribution of the photon exchange diagram (b),

M = (−igW )(igW )Qe sin2 θW v̄(−p+)γρu(p−)
−igρα

(q+ + q−)2

× V αβδ(q+ + q−,−q−,−q+)εβ(q−)εδ(q+) .
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The contribution of the Z exchange diagram (c) is

M =
(−igW )(igW )

2
v̄(−p+)γρ(Ve − Aeγ5)u(p−)

× −igρα

(q+ + q−)2 − M2
Z

× V αβδ(q+ + q−,−q−,−q+)εβ(q−)εδ(q+)

where

V αβδ(p, q, r) = gαβ(pδ − qδ) + gβδ(qα − rα) + gδα(rβ − pβ) .

using the approximate longitudinal polarization vector,

V αβδ(q+ + q−,−q−,−q+)εβ(q−)εδ(q+)

= − (q+ + q−)2

2M2
W

h

qα
+ − qα

−

i

+ O(1) .

The result for the sum of the Z and γ exchange contributions, after inserting the

values for Ve and Ae, is

M = i
(−igW )2

8M2
W

v̄(−p+)(6q+ − 6q−)(1 − γ5)u(p−) ,

which cancels exactly with the first diagram. So we see that the leading
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Experimental observation of W -pairs at LEPII
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Vector boson production in hadronic collisions

WW pair production is also observed at the Tevatron

CDF Run II Summer 2003 Preliminary L = 126 pb−1

Source ee µµ eµ ``

Drell-Yan e+e− 0.40 ± 0.19 0 0.051 ± 0.054 0.45 ± 0.19

Drell-Yan µ+µ− 0 0.49 ± 0.22 0.35 ± 0.17 0.84 ± 0.28

Drell-Yan τ+τ− 0.024 ± 0.010 0.022 ± 0.009 0.067 ± 0.025 0.11 ± 0.03

WZ 0.030 ± 0.004 0.057 ± 0.007 0.11 ± 0.01 0.19 ± 0.02

Fake 0.16 ± 0.04 0.16 ± 0.09 0.40 ± 0.11 0.72 ± 0.15

tt̄ 0.0039 ± 0.0030 0.0054 ± 0.0035 0.020 ± 0.009 0.029 ± 0.010

Total Background 0.61 ± 0.19 0.74 ± 0.24 1.00 ± 0.21 2.34 ± 0.38

WW → dileptons 1.61 ± 0.37 1.36 ± 0.31 3.92 ± 0.89 6.89 ± 1.53

Run 2 Data 2 1 2 5

σpp̄→WW
meas = 5.1+5.4

−3.6 (stat) ± 1.3 (syst) ± 0.3 (lumi) pb .

σpp̄→WW
theo:NLO = 13.25 ± 0.25 pb MCFM hep − ph/9905386
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Theoretical expectations
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