
Troisième Cycle de Physique en Suisse Romande
Exercises for Lecture 2

Keith Ellis

1) Using the solutions to the massless Dirac equation given in the first lecture
show that
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where 6p = γµpµ and hence that, if we sum over spins (helicities)
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This relation is used to reduce squares of matrix elements involving quarks to
traces.

2) Calculate the width of the W boson. Use the sum over the three polar-
izations

∑

polarizations

ε(q)ε∗(q) =
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qµqν
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to perform the average over the polarizations of the W boson. The lowest order
matrix element is given by (q = p1 + p2)
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where gW
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Show that the square of the matrix element summed (averaged) over the
initial (final) polarizations is
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and hence that the result for the partial widths

Γ(W+ → f f̄) = C
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C is a color normalization factor which is one for leptons and 3 for quarks.
The total width is obtained by summimg over three flavours of leptons and two
generations of colored quarks. What is the branching fraction of a W boson
into leptons? (see ESW, page 290).
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