We shall examine here the calculation of the vertex function n-dimensions.
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The first step is to collect the overall factors and to introduce the Feynman
parameters for the three denominators.
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Using the relation t4t4 = C'»I we may write
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where X = —2e¢g?Cr. We now simplify this equation by shifting the momentum
in the normal way ks = k + ap + Bp’ leading to the expression
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where ¢ = —2p - p’. We shall proceed to the simplificatiom of the numerator
terms, where we can immediately drop terms which are even in ks which vanish
under symmetric integration.
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The five remaining terms in the above expression can be simplified as follows.
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which give
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where we have made extensive use of the fact that p-p = p’ - p' =0 and the
equations of motion of the massless spinors pu(p) = @(p’)p’ = 0. In addition we

have used the relations valid in n-dimensions
YV Y = =2(1 — )"
Thus our final result for the numerator factor is
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THe formula which allows us to do the integration is as follows, n = 4 — 2e.
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Using this formula the result for the first UV divergent piece is
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Performing the integration we get
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