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Hard scattering cross sections

Angular ordering (left over from lecture 1)

W production

? DY cross section

? Subtraction method

W + jet production

tt̄ and single top production

Combining NLO corrections and parton showers
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Chudakov effect
Angular ordering is coherence effect common to all gauge theories. In QED it

causes Chudakov effect – suppression of soft bremsstrahlung from e+e− pairs,

which has simple explanation in old-fashioned (time-ordered) perturbation theory.

Consider emission of soft photon at angle θ from electron in pair with opening

angle θee < θ. For simplicity assume θee, θ � 1.

Transverse momentum of photon is kT ∼ zpθ and energy imbalance at e → eγ
vertex is

∆E ∼ k2
T /zp ∼ zpθ2 .

Time available for emission is ∆t ∼ 1/∆E. In this time transverse separation of

pair will be ∆b ∼ θee∆t.
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Chudakov effect
For non-negligible probability of emission, photon must resolve this transverse

separation of pair, so

∆b > λ/θ ∼ (zpθ)−1

where λ is photon wavelength.

This implies that

θee(zpθ2)−1 > (zpθ)−1 ,

and hence θee > θ. Thus soft photon emission is suppressed at angles larger than

opening angle of pair, which is angular ordering.

Photons at larger angles cannot resolve electron and positron charges separately

– they see only total charge of pair, which is zero, implying no emission.

More generally, if i and j come from branching of parton k, with (colour) charge

Qk = Qi + Qk, then radiation outside angular-ordered cones is emitted

coherently by i and j and can be treated as coming directly from (colour) charge of

k.
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Coherent branching

Angular ordering provides basis for coherent parton branching formalism, which

includes leading soft gluon enhancements to all orders.

In place of virtual mass-squared variable t in earlier treatment, use angular

variable

ζ =
pb · pc

Eb Ec
' 1 − cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for

successive branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn
dζ

ζ
dz

αS

2π
P̂ba(z) .
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Coherent branching

In place of virtual mass-squared cutoff t0, must use angular cutoff ζ0 for coherent

branching. This is to some extent arbitrary, depending on how we classify

emission as unresolvable. Simplest choice is

ζ0 = t0/E2

for parton of energy E.

For radiation from particle i with finite mass-squared t0, radiation function

becomes

ω2

„

pi · pj

pi · q pj · q − p2
i

(pi · q)2
«

' 1

ζ

„

1 − t0

E2ζ

«

,

so angular distribution of radiation is cut off at ζ = t0/E2. Thus t0 can still be

interpreted as minimum virtual mass-squared.

With this cutoff, most convenient definition of evolution variable is not ζ itself but

rather

t̃ = E2ζ ≥ t0 .
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Coherent branching

Angular ordering condition ζb, ζc < ζa for timelike branching a → bc (a outgoing)

becomes

t̃b < z2 t̃ , t̃c < (1 − z)2t̃

where t̃ = t̃a and z = Eb/Ea. Thus cutoff on z becomes

q

t0/t̃ < z < 1 −
q

t0/t̃ .

Neglecting masses of b and c, virtual mass-squared of a and transverse

momentum of branching are

t = z(1 − z)t̃ , p2
t = z2(1 − z)2 t̃ .

Thus for coherent branching Sudakov form factor of quark becomes

∆̃q(t̃) = exp

"

−
Z t̃

4t0

dt′

t′

Z 1−
√

t0/t′

√
t0/t′

dz

2π
αS(z2(1 − z)2t′)P̂qq(z)

#

At large t̃ this falls more slowly than form factor without coherence, due to the

suppression of soft gluon emission by angular ordering.
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Coherent branching

Note that for spacelike branching a → bc (a incoming, b spacelike), angular

ordering condition is

θθ

θ

ba

c

a b

c

θb > θa > θc ,

and so for z = Eb/Ea we now have

t̃b > z2 t̃a , t̃c < (1 − z)2 t̃a .

Thus we can have either t̃b > t̃a or t̃b < t̃a, especially at small z — spacelike

branching becomes disordered at small x.
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Lepton-pair production

Mechanism for Lepton

pair production,

W -production,

Z-production,

Vector-boson pairs, . . .

Collectively known as the

Drell-Yan process.

Color average 1/N .

dσ̂

dQ2
=

σ0

N
Q2

q δ(ŝ − Q2), σ0 =
4πα2

3Q2
, cf e+e− annihilation.

In the CM frame of the two hadrons, the momenta of the incoming partons are

p1 =

√
s

2
(x1, 0, 0, x1), p2 =

√
s

2
(x2, 0, 0,−x2) .
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The square of the qq̄ collision energy ŝ is related to the overall hadron-hadron collision

energy by ŝ = (p1 + p2)2 = x1x2s. The parton-model cross section for this process is:

dσ

dM2
=

Z 1

0
dx1dx2

X

q

{fq(x1)fq̄(x2) + (q ↔ q̄)} dσ̂

dM2
(qq̄ → l+l−)

=
σ0

Ns

Z 1

0

dx1

x1

dx2

x2
δ(1 − z)

2

4

X

q

Q2
q {fq(x1)fq̄(x2) + (q ↔ q̄)}

3

5 .

For later convenience we have introduced the variable z = Q2

ŝ
= Q2

x1x2s
.

The sum here is over quarks only and the q̄q contributions are indicated explicitly.
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Next-to-leading order

The contribution of the real diagrams (in four dimensions) is

|M |2 ∼ g2CF

"

u

t
+

t

u
+

2Q2s

ut

#

= g2CF

"

“1 + z2

1 − z

”“−s

t
+

−s

u

”

− 2

#

where z = Q2/s, s + t + u = Q2.

Note that the real diagrams contain collinear singularities, u → 0, t → 0 and soft

singularities, z → 1.

The coefficient of the divergence is the unregulated branching probability P̂qq(z).

Ignore for simplicity the diagrams with incoming gluons.
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Control the divergences by continuing the dimensionality of space-time,

d = 4− 2ε, (technically this is dimensional reduction). Performing the phase space

integration, the total contribution of the real diagrams is

σR =
αS

2π
CF

 

µ2

Q2

!ε

cΓ

"

“ 2

ε2
+

3

ε
− π2

3

”

δ(1 − z) − 2

ε
Pqq(z)

− 2(1 − z) + 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

with cΓ = (4π)ε/Γ(1 − ε).

The contribution of the virtual diagrams is

σV = δ(1 − z)

"

1 +
αS

2π
CF

 

µ2

Q2

!ε

c′Γ

“

− 2

ε2
− 3

ε
− 6 + π2

”

#

c′Γ = cΓ + O(ε3)
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Adding it up we get in dim-reduction

σR+V =
αS

2π
CF

 

µ2

Q2

!ε

cΓ

"

“2π2

3
− 6
”

δ(1 − z) − 2

ε
Pqq(z) − 2(1 − z)

+ 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

The divergences, proportional to the branching probability , are universal.

We will factorize them into the parton distributions. We perform the mass

factorization by subtracting the counterterm

2
αS

2π
CF

"

−cΓ

ε
Pqq(z) − (1 − z) + δ(1 − z)

#

(The finite terms are necessary to get us to the MS-scheme).

σ̂ =
αS

2π
CF

"

“2π2

3
−8
”

δ(1−z)+4(1+z2)
h ln(1 − z)

1 − z

i

+
−2

1 + z2

(1 − z)
ln z+2Pqq(z) ln

Q2

µ2

#

Similar correction for incoming gluons.
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Application to W,Z production

Agreement with NLO theory is good (three curves estimate theoretical error).

LO curves (not shown) lie about 25% too low.
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Heavy quark production, leading orderThe leading-order processes for the production of a heavy quark Q of mass m in

hadron-hadron collisions

(a) q(p1) + q(p2) → Q(p3) + Q(p4)

(b) g(p1) + g(p2) → Q(p3) + Q(p4)

where the four-momenta of the partons are given in brackets.

Process
P

|M|2/g4

q q → Q Q 4
9

“

τ2
1 + τ2

2 + ρ
2

”

g g → Q Q
“

1
6τ1τ2

− 3
8

”“

τ2
1 + τ2

2 + ρ − ρ2

4τ1τ2

”

P

indicates averaged (summed) over initial (final) colours and spins
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We have introduced the following notation for the ratios of scalar products:

τ1 =
2p1.p3

ŝ
, τ2 =

2p2.p3

ŝ
, ρ =

4m2

ŝ
, ŝ = (p1 + p2)

2.

The short-distance cross section is obtained from the invariant matrix element in
the usual way:

dσ̂ij =
1

2ŝ

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4)

X

|Mij |2.

The first factor is the flux factor for massless incoming particles. The other terms

come from the phase space for 2 → 2 scattering.

In terms of the rapidity y = 1
2

ln((E + pz)/(E − pz)) and transverse momentum,

pT , the relativistically invariant phase space volume element of the final-state

heavy quarks is

d3p

E
= dy d2pT .
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The result for the invariant cross section may be written as

dσ

dy3dy4d2pT
=

1

16π2ŝ2

X

ij

x1fi(x1, µ2) x2fj(x2, µ2)
X

|Mij |2.

x1 and x2 are fixed if we know the transverse momenta and rapidity of the outgoing

heavy quarks. In the centre-of-mass system of the incoming hadrons we may write

p1 =
1
2

√
s(x1, 0, 0, x1)

p2 =
1
2

√
s(x2, 0, 0,−x2)

p3 = (mT cosh y3, pT , 0, mT sinh y3)

p4 = (mT cosh y4,−pT , 0, mT sinh y4).

Applying energy and momentum conservation, we obtain

x1 =
mT√

s

`

ey3 + ey4
´

, x2 =
mT√

s

`

e−y3 + e−y4
´

, ŝ = 2m2
T (1 + cosh ∆y).

The quantity mT =
√

(m2 + p2
T ) is the transverse mass of the heavy quarks and

∆y = y3 − y4 is the rapidity difference between them.
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In these variables the leading order cross section is

dσ

dy3dy4d2pT
=

1

64π2m4
T (1 + cosh(∆y))2

X

ij

x1fi(x1, µ2) x2fj(x2, µ2)
X

|Mij |2.

Expressed in terms of m, mT and ∆y, the matrix elements for the two processes are

X

|Mqq|2 =
4g4

9

“ 1

1 + cosh(∆y)

”“

cosh(∆y) +
m2

m2
T

”

,

X

|Mgg|2 =
g4

24

“8 cosh(∆y) − 1

1 + cosh(∆y)

”“

cosh(∆y) + 2
m2

m2
T

− 2
m4

m4
T

”

.

As the rapidity separation ∆y between the two heavy quarks becomes large

X

|Mqq|2 ∼ constant,
X

|Mgg|2 ∼ exp ∆y .

The cross section is damped at large ∆y and heavy quarks produced by qq̄

annihilation are more closely correlated in rapidity those produced by gg fusion.
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Applicability of perturbation theory?

Consider the propagators in the diagrams.

(p1 + p2)2 = 2p1.p2 = 2m2
T

`

1 + cosh∆y
´

,

(p1 − p3)
2 − m2 = −2p1.p3 = −m2

T

`

1 + e−∆y
´

,

(p2 − p3)
2 − m2 = −2p2.p3 = −m2

T

`

1 + e∆y
´

.

Note that the propagators are all off-shell by a quantity of least of order m2.

Thus for a sufficiently heavy quark we expect the methods of perturbation theory

to be applicable. It is the mass m (which by supposition is very much larger than

the scale of the strong interactions Λ) which provides the large scale in heavy

quark production. We expect corrections of order Λ/m

This does not address the issue of whether the charm or bottom mass is large

enough to be adequately described by perturbation theory.
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Heavy quark production in O(α3
S)

In NLO heavy quark production m is the heavy quark mass.

σ(S) =
X

i,j

Z

dx1dx2 σ̂ij(x1x2S, m2, µ2)Fi(x1, µ2)Fj(x2, µ2)

σ̂i,j(ŝ, m
2, µ2) = σ0cij(ρ̂, µ2)

where ρ̂ = 4m2/ŝ, µ̄2 = µ2/m2, σ0 = α2
S(µ2)/m2 and ŝ in the parton total c-of-m

energy squared. The coupling satisfies

dαS

d ln µ2
= −b0

α2
S

2π
+ O(α3

S), b0 =
11N − 2nf

6

cij

“

ρ,
µ2

m2

”

= c
(0)
ij (ρ) + 4παS(µ2)

h

c
(1)
ij (ρ) + c

(1)
ij (ρ) ln(

µ2

m2
)
i

+ O(α2
S)
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The lowest-order functions c
(0)
ij are obtained by integrating the lowest order matrix

elements

c
(0)
qq (ρ) =

πβρ

27

"

(2 + ρ)

#

,

c
(0)
gg (ρ) =

πβρ

192

"

1

β

ˆ

ρ2 + 16ρ + 16
˜

ln
“1 + β

1 − β

”

− 28 − 31ρ

#

,

c
(0)
gq (ρ) = c

(0)
gq (ρ) = 0 ,

and β =
√

1 − ρ.

The functions c
(0)
ij vanish both at threshold (β → 0) and at high energy (ρ → 0).

Note that the quark-gluon process is zero in lowest order, but is present in higher

orders.
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The functions c
(1)
ij are also known

Examples of higher-order corrections to heavy quark production.

In order to calculate the cij in perturbation theory we must perform both

renormalization and factorization of mass singularities. The subtractions required

for renormalization and factorization are done at mass scale µ.
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Higher order results, c
(1)
ij
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µ dependence

µ is an unphysical parameter. The physical predictions should be invariant under

changes of µ at the appropriate order in perturbation theory. If we have performed a

calculation to O(α3
S), variations of the scale µ will lead to corrections of O(α4

S),

µ2 d

dµ2
σ = O(α4

S).

The term c(1), which controls the µ dependence of the higher-order perturbative

contributions, is fixed in terms of the lower-order result c(0):

c
(1)
ij (ρ) =

1

8π2

"

4πbc
(0)
ij (ρ) −

Z 1

ρ
dz1

X

k

c
(0)
kj (

ρ

z1
)P

(0)
ki (z1)

−
Z 1

ρ
dz2

X

k

c
(0)
ik (

ρ

z2
)P

(0)
kj (z2)

#

.
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In obtaining this result we have used the renormalization group equation for the running

coupling

µ2 d

dµ2
αS(µ2) = −bα2

S + . . .

and the lowest-order form of the GLAP equation

µ2 d

dµ2
fi(x, µ2) =

αS(µ2)

2π

X

k

Z 1

x

dz

z
P

(0)
ik (z)fk(

x

z
, µ2) + . . . .

This illustrates an important point which is a general feature of renormalization group

improved perturbation series in QCD. The coefficient of the perturbative correction

depends on the choice made for the scale µ, but the scale dependence changes the

result in such a way that the physical result is independent of that choice. Thus the scale

dependence is formally small because it is of higher order in αS . This does not assure

us that the scale dependence is actually numerically small for all series. A pronounced

dependence on the scale µ is a signal of an untrustworthy perturbation series.
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Scale dependence in top production

Inclusion of the higher order terms leads to a stabilization of the top cross section.
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Top production at LHC

At LHC top cross section is more than 100 times bigger than at Tevatron.
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Scale dependence in bottom production

The perturbation series for bottom quark production is not well behaved.

The lowest order cross section is almost µ independent because of an accidental

cancellation between the fall-off of αS and the increase of the gluon distributions

with increasing µ.
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Beauty production at CDF

To compare the b-quark production prediction with the experimental data on

B-meson production, we need to include a fragmentation function.

The data agrees with the upper range of the theoretical prediction. Given the

status of the perturbation theory for b-quark production, this is a positive outcome.
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Top production
All the information on the top quark is still rather limited and crude

Within errors agreement between three generation theory and experiment

Experiment Theory

mt 172.5 ± 2.3 GeV 178.9 + 12.0 − 9.0 GeV

BR(t → Wb)/BR(t → Wq) 1.11+0.21
−0.26 ≈ 1

BR(t → W0b) 0.74+0.22
−0.34 ≈ 0.7

BR(t → W+b) < 0.27 (95%cl) ≈ 0

)
2

Top Quark Mass (GeV/c
160 162 164 166 168 170 172 174 176 178 180

) 
(p

b
)

t
 t

→ 
p

(p
σ

0

2

4

6

8

10

12

Cacciari et al. JHEP 0404:068 (2004)

 uncertainty±Cacciari et al. 

Kidonakis,Vogt PIM PRD 68 114014 (2003)

Kidonakis,Vogt 1PI

-1
CDF II Preliminary 760 pb
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Single Top production

CDF has measured

BR(t → Wb)

BR(t → Wq)
=

|Vtb|2
|Vtd|2 + |Vts|2 + |Vtb|2

= 1.11+0.21
−0.26

If we assume just three generations of quarks, unitarity of the CKM matrix implies

that the denominator is equal to one, so that we can extract

|Vtb| = 1.11+0.10
−0.13

But assuming unitarity we know already that Vtb = 0.9990 −−0.9993.

The current CDF measurement shows that |Vtb| � |Vtd|, |Vts|.
For a real measurement of Vtb we must look at the electroweak production of a top

quark.
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Producing the top quark
The top quark was discovered in Run I of the Tevatron by producing it in pairs:

q

q̄

t

t̄

However, it should also be possible to produce it singly in Run II, for example:

� � �

��
�

� � �
� �

This is especially interesting since it would yield information about the weak

interaction of top quarks (Vtb).
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Top production rates

q

q̄

t

t̄

�
� 	



q

q̄

b

W

b̄

t̄

q

bb

q

W

t

W

6 pb 0.14 pb

720 pb 66 pb

0.8 pb 1.8 pb

10 pb 240 pb

All cross-sections are known to NLO (Tevatron / LHC)

The total single top cross-section is smaller than the tt̄ rate by about a factor of

two, at both machines
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Experimental signature

The experimental “signature” is an event which contains a top quark – identified by

the combined mass of its decay products – and which also has two jets containing

b-quarks. These can be distinguished from other jets around 50% of the time.

Observed events such as these can also be the result of other basic processes.

These backgrounds include, for example:

u W
+

b̄

b

d̄

u W
+

b̄

b

d̄

Z
0

Wbb̄ WZ(→ bb̄)

MCFM can calculate the signal and backgrounds at NLO.
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Inclusion of decay

Results had previously been presented without including the decay of the top

quark. Without it, predictions for some quantities used in Tevatron search

strategies are impossible

Final state radiation that enters at next-to-leading order is possible in either the

production or decay phase:

production

decay
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Backgrounds
b

b̄

b

b̄

q

q̄

u u

s̄ c̄

du

bb

b

b̄

`

ν

b
Z

b̄

j

j

c

c̄
c c

u d

30 11 3

6 3 35

19 6 3

Cross-sections in fb include nominal tagging efficiences and mis-tagging/fake

rates. Calculated with MCFM, most at NLO

Rates are 7 fb and 11 fb for s- and t−channel signal
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Single top signal vs. backgrounds

HT = scalar sum of jet, lepton and missing ET

Qη is the product of the lepton charge and the rapidity of the untagged jet, useful

for picking out the t-channel process

Signal:Background (with our nominal efficiencies) is about 1 : 6
– a very challenging measurement indeed. Production in this mode has not yet

been observed at Fermilab.

it will take 1.5 fb−1 to have evidence (3σ) for single top from a single experiment at

the Tevatron (Gresele, Moriond 2006).
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Top +jet production at LHC

tt̄+jet cross section same as tt̄ cross section; Radiation probability is one.

Note that a pT = 20 GeV jet can be adequately described using the soft

approximation.

The W+W− cross section is also shown, (subject to gauge cancellation)
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General calculational method for NLO
Direct integration is good for the total cross section, but for differential distributions,

(to which we want to apply cuts), we need a Monte Carlo method.

We use a general subtraction procedure at NLO.

at NLO the cross section for two initial partons a and b and for m outgoing partons,

is given by

σab = σLO
ab + σNLO

ab

where

σLO
ab =

Z

m
dσB

ab

σNLO
ab =

Z

m+1
dσR

ab +

Z

m
dσV

ab

the singular parts of the QCD matrix elements for real emission, corresponding to

soft and collinear emission can be isolated in a process independent manner
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Calculational method (cont)

One can use this the construct a set of counterterms

dσct =
X

ct

Z

m
dσB ⊗

Z

1
dVct

where dσB denotes the appropriate color and spin projection of the Born-level

cross section, and the counter-terms are independent of the details of the process

under consideration.

these counterterm cancel all non-integrable singularities in dσR, so that one can

write

σNLO
ab =

Z

m+1
[dσR

ab − dσct
ab] +

Z

m+1
dσct

ab +

Z

m
dσV

ab

The phase space integration in the first term can be performed numerically in four

dimensions.
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Matrix element counter-event for W production

In the soft limit p5 → 0 we have

|M1(p1, p2, p3, p4, p5)|2 = g2CF
p1 · p2

p1 · p5 p2 · p5
|M0(p1, p2, p3, p4)|2

Eikonal factor can be associated with radiation from a given leg by partial

fractioning

p1 · p2

p1 · p5 p2 · p5
= [

p1 · p2

p1 · p5 + p2 · p5
][

1

p1 · p5
+

1

p2 · p5
]

including the collinear contributions, singular as p1 · p5 → 0, the matrix element for

the counter event has the structure

|M1(p1, p2, p3, p4, p5)|2 =
g2

xap1 · p5
P̂qq(xa)|M0(xap1, p2, p̃3, p̃4)|2

where 1 − xa = (p1 · p5 + p2 · p5)/p1 · p2 and P̂qq(xa) = CF (1 + x2)/(1 − x)
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Subtraction method for NLO

For event q(p1) + q̄(p2) → W+(ν(p3) + e+(p4)) + g(p5) with p1 + p2 =
P5

i=3 pi

we generate a counter event q(xap1) + q̄(p2) → W+(ν(p̃3) + e+(p̃4)) and

xap1 + p2 =
P4

i=3 p̃i with 1 − xa = (p1 · p5 + p2 · p5)/p1 · p2.

A Lorentz transformation is performed on all j final state momenta

p̃j = Λµ
ν pν

j , j = 3, 4 such that p̃µ
j → pµ

j for p5 collinear or soft.

The longitudinal momentum of p5 is absorbed by rescaling with x.

The other components of the momentum, p5 are absorbed by the Lorentz

transformation.

In terms of these variables the phase space has a convolution structure,

dφ(3)(p1, p2; p3, p4, p5) =

Z 1

0
dx dφ(2)(p2, xp1; p̃3, p̃4)[dp5(p1, p2, x)]

where

[dp5(p1, p2, xa)] =
ddp5

(2π)3
δ+(p2

5)Θ(x)Θ(1 − x)δ(x − xa)
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MCFM overview John Campbell and R.K. Ellis

Parton level cross-sections predicted to NLO in αS

pp̄ → W±/Z pp̄ → W+ + W−

pp̄ → W± + Z pp̄ → Z + Z

pp̄ → W± + γ pp̄ → W±/Z + H

pp̄ → W± + g? (→ bb̄) pp̄ → Zbb̄

pp̄ → W±/Z + 1 jet pp̄ → W±/Z + 2 jets

pp̄(gg) → H pp̄(gg) → H + 1 jet

pp̄(V V ) → H + 2 jets pp̄ → t + X

pp → t + W

⊕ less sensitivity to µR, µF , rates are better normalized, fully differential

distributions.

	 low particle multiplicity (no showering), no hadronization, hard to model

detector effects
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MCFM:examples

(W+2 jet)/(W+1 jet)
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MCFM examples

Production of a mH = 120 GeV Higgs, using effective Lagrangian HGµνGµν ,

obtained in heavy top limit.

Cross sections for Higgs+anything or Higgs+1 jet+anything are the same.

Radiation probability is one, and NLO is clearly inadequate.

what is needed is a combination of NLO and shower Monte-Carlo, (MC@NLO)
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NLO: Schematic description

A schematic description of a NLO calculation is as follows.

 

dσ

dx

!

B

= Bδ(x)

 

dσ

dx

!

V

= a

 

B

2ε
+ V

!

δ(x)

 

dσ

dx

!

R

= a
R(x)

x

In terms of the above the calculation of any observable O can written as

〈O〉 = lim
ε→0

Z 1

0
dxx−2εO(x)

" 

dσ

dx

!

B

+

 

dσ

dx

!

V

+

 

dσ

dx

!

R

#
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Subtraction method
We can isolate the divergent part of the real radiation contribution

〈O〉
R

= aBO(0)

Z 1

0
dx

x−2ε

x
+ a

Z 1

0
dx

O(x)R(x) − BO(0)

x1+2ε
.

The second term does not contain singularities so we can set ε = 0

〈O〉
R

= −a
B

2ε
O(0) + a

Z 1

0
dx

O(x)R(x) − BO(0)

x
.

The NLO prediction using the subtraction method is

〈O〉
sub

= BO(0) + a

»

V O(0) +

Z 1

0
dx

O(x)R(x) − BO(0)

x

–

.
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Toy Monte Carlo

Rewrite the basic NLO formula in a different which allows simpler matching with

the Monte Carlo:

〈O〉
sub

=

Z 1

0
dx

»

O(x)
aR(x)

x
+ O(0)

„

B + aV − aB

x

«–

.

Introduce Sudakov form factor for the toy model

∆(x1, x2) = exp

»

−a

Z x2

x1

dz
Q(z)

z

–

,

where Q(z) is a radiation function with the following general properties:

0 ≤ Q(z) ≤ 1, lim
z→0

Q(z) = 1, lim
z→1

Q(z) = 0.

If xs is the energy of the system before the first branching occurs, then ∆(x, xs) is

the probability that no photon be emitted with energy z such that x ≤ z ≤ xs.
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Matching NLO and MC
„

dσ

dO

«

MC@LO

= BIMC(O, 1).

„

dσ

dO

«

naive

=

Z 1

0
dx

"

IMC(O, xM(x))
aR(x)

x
+ IMC(O, 1)

„

B + aV − aB

x

«

#

.

This equation suggests the following procedure:

Pick at random 0 ≤ x ≤ 1.

Generate an MC event with xM(x) as maximum energy available to the photon in

the first branching; attach to this event the weight wEV = aR(x)/x.

Generate another MC event (a “counter-event”) with xM = 1; attach to this event

the weight wCT = B + aV − aB/x.

Repeat the first three steps N times, and normalize with 1/N .

This procedure fails, since the weights wEV and wCT diverge as x → 0.
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Modified subtraction method

„

dσ

dO

«

msub

=

Z 1

0
dx

"

IMC(O, xM(x))
a[R(x) − BQ(x)]

x

+IMC(O, 1)

„

B + aV +
aB[Q(x) − 1]

x

«

#

.

We subtract and add the quantities

IMC(O, 1)
aBQ(x)

x
, IMC(O, xM)

aBQ(x)

x

The two terms involving Q(x) are not identical, so this is not a subtraction in the

usual sense of an NLO computation.

The two terms do not contribute to the observable O at O(a), because they are

compensated by terms in the parton shower BIMC(O, 1)
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Expansion to O(αS)
Expansion of Monte Carlo piece is

IMC = (1 − a

Z 1

x0

dt
Q(t)

t
δ(O − O(0)) + a

Z 1

x0

dt
Q(t)

t
δ(O − O(t)) + O(a2)

Insertion of this piece in the modified Monte-Carlo formula gives

„

dσ

dO

«

msub

=

Z 1

0
dx

"

δ(O − O(x))
a[R(x) − BQ(x)]

x

+δ(O − O(0))

„

B + aV − aB

x

«

+aBδ(O − O(0))

„

Q(x)

x
−
Z 1

x0

dt
Q(t)

t

«

+aB

Z 1

x0

dtδ(O − O(t))
Q(t)

t

#

+ O(a2).
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Expansion (continued)

Collecting terms we obtain the starting formula for a NLO correction, plus power

suppressed terms which are anyway not controlled in the Monte Carlo

„

dσ

dO

«

msub

=

Z 1

0
dx

"

δ(O − O(x))
aR(x)

x
+ δ(O − O(0))

„

B + aV − aB

x

«

#

+ aB

Z x0

0
dx

Q(x)

x

h

δ(O − O(0)) − δ(O − O(x))
i

+ O(a2).

It can also be shown that the normal summation of branching logarithms is not

compromised by this procedure.
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Asymmetry in top production Frixione,Nason,Webber

Example of tt̄-production using MC@NLO

NLO curve (in blue, dotted).

Quantum Chromodynamics at the LHCLecture II: Hard scattering cross sections – p.53/54



Conclusions
NLO formulation of QCD processes gives better information about normalization,

and less dependence on unphysical scales.

Matching with Monte Carlo can be implemented.

Much remains to be done

? The NLO corrections which necessary for normalization are unknown for

many of the most interesting processes. 2 → 2 processes are known, some

2 → 3 processes, one or two 2 → 4 processes.

? MC@NLO is known only for a very limited set of processes, namelty the

hadroproduction of single vector and Higgs bosons, vector boson pairs, heavy

quark pairs, singletop, lepton pairs, and Higgs bosons in association with a W

or Z.
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