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β function of QCD.

The β-function of QCD is negative. Terms up to O(α5
S) are known.

α2

S
: Gross and Wilczek ; Politzer

α3

S : W. E. Caswell; D. R. T. Jones; E. Egorian and O. V. Tarasov

α4

S
: O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov;

S. A. Larin and J. A. M. Vermaseren

α5

S
: T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin
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Current experimental results on αS
Bethke,hep-ph/0407021
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The decrease of αS is quite slow
– as the inverse power of a
logarithm.

αS is large at current scales.

Higher order corrections are im-
portant.
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The challenge

The challenge is to provide the most accurate information

possible to experimenters working at the Tevatron and the LHC.

Proton (anti)proton collisions give rise to a rich event structure.

Complexity of the events will increase as we pass from the
Tevatron to the LHC.

The goals

? To provide physics software tools which are both flexible and
give the most accurate representations of the underlying
theories.

? To discover new efficient ways of calculating in perturbative

QCD.
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Hadron-hadron processes
In hard hadron-hadron scattering, constituent partons from each

incoming hadron interact at short distance (large momentum

transfer Q2).
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Form of cross section is
dσ

dX
=

∑

i,j

∑

X̃

∫

dx1dx2 fi(x1, µ
2)fj(x2, µ

2)

× σ̂X̃
ij (αS(µ2), Q2, µ2) F (X̃ → X, µ2)

where µ2 is factorization scale, σ̂ij is subprocess cross section

for parton types i, j and X represents the hadronic final state.
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Hadron-hadron processes II

σ̂ij is calculable as a perturbation series in αS .

The physical predictions are invariant under changes of µ at the
appropriate order in perturbation theory. Thus if we have

performed a calculation to O(α3
S), variations of the scale µ will

lead to corrections of O(α4
S),

µ2 d

dµ2
σ = O(α4

S).
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Approaches to the calculation of σ̂

LO

? Automatic calculation of tree graphs (Madgraph/Helas,

Alpgen, CompHEP, . . .)

? LO + parton shower

? New analytic techniques

NLO

? Analytic techniques for loop diagrams

? Parton level Monte Carlo (MCFM, NLOJET++, . . .)

? Numerical techniques for loop diagrams

? NLO + parton shower (MC@NLO)

NNLO

? a few (mostly) inclusive results are known
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Approaches to the calculation of σ̂

LO

? Automatic calculation of tree graphs (Madgraph/Helas,

Alpgen, CompHEP, . . .) YES

? LO + parton shower YES

? New analytic techniques YES

NLO

? Analytic techniques for loop diagrams NO

? Parton level Monte Carlo (MCFM, NLOJET++, . . .) YES

? Numerical techniques for loop diagrams YES

? NLO + parton shower (MC@NLO) NO

NNLO

? a few (mostly) inclusive results are known NO
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Multijet rates using tree graphs

Calculation of tree graphs using off-shell recurrence relations is a
solved problem Berends, Giele.

Draggiotis et al

At 1033 cm−2s−1, left
hand scale gives events
per second

g = 1

Similar calculations are
possible with other pro-
grams Madgraph, Alp-
gen, COMPHEP, . . .
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The role of tree graphs

Evaluation of tree graphs with ≤ 9 partons is achievable in a

moderate amount of CPU time.

For example, for W, Z + n jets at tree graph level.
Madgraph II can generate processes with ≤ 9 external particles

(madgraph.hep.uiuc.edu)
Vecbos, W-boson plus up to 4 jets or a Z-boson plus up to 3 jets
(theory.fnal.gov/people/giele/vecbos.html)
Alpgen, W,Z + up to 6 jets.

Problems with tree graphs

? Overall normalization is uncertain. W+4 jets occurs at O(α4
S).

If scale uncertainty changes αS by 10%, this leads to 40%
uncertainty in cross section.

? Sometimes a new parton process appears at NLO, leading to

large change in shapes. (e.g., gluons at the LHC).

? Require a procedure to combine with parton showers.
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Combining Matrix elements and parton

showers
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Cuts: p
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lep> 20 GeV, |η
lep

|<1

p
T

jet> 15 GeV, |η
jet

|<2

p
T

miss> 20 GeV

∆R
jj
> 0.7

Divide phase space into two
regions – region I for jet
production modeled by the
appropriate matrix element,
region II for jet evolution modeled
by the parton shower.

Procedure to cancel the leading
dependence on separation pa-
rameter (CKKW)

pT spectrum of the hardest jet in inclusive W+1 jet, using Matrix
element improved showering scheme.

Agreement in shape between exact NLO calculation and ME
improved shower (SHERPA). F. Krauss et al, hep-ph/0409106
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Spinor notation

Denote spinor for lightlike vectors as follows:-

|k+〉 = right-handed spinor for massless vector k

|k−〉 = left-handed spinor for massless vector k

Polarization vectors are given by (q ≡ gauge choice)

ε+
µ (k) =

〈q−|γµ|k−〉√
2〈qk〉

, ε−µ (k) =
〈q+|γµ|k+〉√

2[kq]

Obeys all the requirements of a polarization vector

ε2
i = 0, k · ε(k) = 0, q · ε(k) = 0, ε+ · ε− = −1

Equivalent notations

εabλjaλlb ≡ 〈jl〉 ≡ 〈k−
j |k+

l 〉 =
√

2kj · kle
iφ

εȧḃλ̃jȧλ̃lḃ ≡ [jl] ≡ 〈k+
j |k−

l 〉 = −
√

2kj · kle
−iφ
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MHV amplitudes – 5 gluon amplitude
Decompose gluonic amplitude into color-ordered sub-amplitudes

A = Tr{ta1ta2ta3ta4ta5}m(1, 2, 3, 4, 5) + 23 permutations

Two of the color stripped amplitudes vanish

m(g+
1 , g+

2 , g+
3 , g+

4 , g+
5 ) = 0

m(g−1 , g+
2 , g+

3 , g+
4 , g+

5 ) = 0

The maximal helicity violating 5 gluon amplitude

m(g−1 , g−2 , g+
3 , g+

4 , g+
5 ) =

〈12〉4
〈12〉〈23〉〈34〉〈45〉〈51〉

〈ij〉, [ij] useful because QCD amplitudes have square root singularities.
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MHV amplitudes

Parke and Taylor, Berends and Giele

The generalization to the case with two contiguous positive
helicity gluons and n − 2 negative gluons is

m(g−1 , g−2 , g+
3 , . . . g+

n ) =
〈12〉4

〈12〉〈23〉 . . . 〈n1〉

Remember 〈ij〉 are the spinor products ∼
√

(2pi · pj)

Intuition from twistor space leads to two advances using spinors:

? Building more complicated amplitudes using effective MHV
vertices.

? BCFW On-shell recursion relations.
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MHV calculus Cachazo,Svrcek,Witten

Use MHV amplitudes as effective vertices to build more
complicated amplitudes

n +

1 −

+ −
4 +

3 −

2 −

i ++i 1 +

− +

2 −

1 −

+n

3 −

4 +

i + i + 1 +

Obtain simple expressions for tree amplitudes in terms of spinor
products

Individual terms in the expressions for tree amplitudes contain
spurious poles which cancel in the sum. These may compromise
the utility of the expressions for numerical evaluation.
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On-shell recursion Britto et al, hep-th/0501052

Perform shift of the momenta conserving masslessness and
overall momentum conservation

pµ
1 → p̂µ

1 = pµ
1 − z

2
〈1−|γµ|n−〉, pµ

n → p̂µ
n = pµ

n +
z

2
〈1−|γµ|n−〉

P̂ 2
1,k = P 2

1,k − z〈1−|6Pi,k|n−〉, P1,k =
k
∑

j=1

pj

For each partition of momenta we obtain a pole zα

zα =
P 2

1,k

〈1−|6Pi,k|n−〉

If the tree amplitudes, A(z), vanish for z → ∞ we can close the

contour on the integral 1
2πi

∮

c
dz
z A(z)
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On-shell recursion

A(0) = −
∑

poles α

Residuez=zα

A(z)

z

Atree
n (1, 2, . . . , n) =

∑

h=±1

n−2
∑

k=2

Atree
k+1(1̂, 2, . . . , k,−P̂−h

1,k )
i

P 2
1,k

× Atree
n−k+1(P̂

h
1,k, k + 1, . . . , n − 1, n̂).

Thus for the six gluon amplitude (220 diagrams) we have

A6(1
+, 2+, 3+, 4−, 5−, 6−) =

i

〈2−|(6 + 1)|5−〉

×
[ (〈6−|(1 + 2)|3−〉)3
〈61〉〈12〉[34][45]s612

+
(〈4−|(5 + 6)|1−〉)3
〈23〉〈34〉[56][61]s561

]

notice unphysical singularities when the sum if 1+6 is a linear

combination of 2 and 5.
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MHV outlook

Lead to beautiful results for gauge theory amplitudes; however the

evaluation of pure gluon tree graphs is a numerically solved
problem, (Berends-Giele recursion).

Elegance of results relies on the introduction spurious
singularities; these can have a bearing on their numerical utility.

So far impact on real phenomenology limited; simple tree graph

results for Higgs+5 parton amplitudes Dixon et al, Badger et al

Extension to loops is the next frontier.
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NLO
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Why NLO?

The benefits of higher order calculations are:-

Less sensitivity to unphysical input scales (eg. renormalization
scale)

? First prediction of normalization of observables at NLO

? More accurate estimates of backgrounds for new physics
searches.

? Confidence that cross-sections are under control for precision
measurements

More physics

? Jet merging

? Initial state radiation

? More species of incoming partons enter at NLO

It represents the first step for other techniques matching with
resummed calculations, eg. NLO parton showers
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NLO calculation

Ingredients in a NLO calculation are

? Born level amplitude

? Real contribution: Addition of one extra parton to Born level
process

? Virtual contribution: Interference of one-loop amplitude with
Born amplitude

Real and virtual separately contain singularities from the soft and
collinear regions which cancel in the sum.

Current stumbling block is the calculation of virtual one loop
diagrams

? Calculation of one loop amplitude rapidly becomes
complicated as number of partons increases.

? Especially true as we go beyond the most symmetric cases
with all gluons.
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Example: e+e− total rate

Consider the O(αS) corrections to total e+e− → qq̄ rate.

Virtual gluon contributions (a): using dimensional regularization

Soft and collinear singularities are regulated, appearing instead
as poles at D − 4 = −2ε.

σqq̄ = 3σ0

{

1 +
2αS

3π
H(ε)

[

− 2

ε2
− 3

ε
− 8 + π2 + O(ε)

]}

.
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Example: e+e− total rate

Real contributions integrated over unobserved gluon

σqq̄g = 2σ0

αS

π
H(ε)

[

2

ε2
+

3

ε
+

19

2
− π2 + O(ε)

]

.

Adding real and virtual contributions, poles cancel and result is

finite as ε → 0. Total cross section is finite (infrared safe).

σqq̄+qq̄g = 3σ0

{

1 +
αS

π
+ O(α2

S)
}

However the virtual corrections to processes with a larger number

of legs, for example, W+ → ud̄gggg (relevant for W +4 jets

calculation) are not so easily calculated.
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Pure QCD amplitudes at one loop

Four parton processes

? qq̄q′q̄′ at one loop R.K. Ellis, Furman, Haber, Hinchliffe, 1980

? qq̄gg, gggg at one loop R.K. Ellis, Sexton, 1985

Five parton processes

? ggggg at one loop Bern et al, hep-ph/9302280

? qq̄ggg at one loop Bern et al, hep-ph/9409393

? qq̄q′q̄′g at one loop Kunszt, hep-ph/9405386

Six parton processes

? Partial ggggg at one loop (completion expected in 2006)
Bern et al, hep-ph/0505005,hep-ph/0505055,hep-ph/0507005,hep-ph/0412210

Britto et al hep-ph/0503132,Bedford et al, hep-th/0412108

? Advances in six parton amplitudes, using all the theoretical

tools, cut-constructibility, Susy (Yang-Mills) decomposition,
BCFW recursion . . .
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Decomposition of six gluon amplitude

Six gluon amplitude broken down in to simpler pieces

Agluon = AN=4 − 4AN=1 + Ascalar

where Agluon/scalar denotes an amplitude with only a
gluon/complex scalar running in the loop.

Because of their improved ultraviolet behaviour, the
supersymmetric pieces of the amplitude are cut-constructible. Full
SUSY amplitude determined by the discontinuities, ie tree
diagrams

(a)

1

23

4

�

1 = p

p
 +

 k
4 p

 −
 k

1

�

2 = p − k1 − k2

(b)

4 1

23

p

� 2 =
 p

 +
 k

4  
1  =

 p
 −

 k
1

p − k1 − k2

∫

dnp
2πδ(p2)2πδ((p − k1 − k2)

2)

(p + k4)2(p − k1)2

→
∫

dnp
1

(p + k4)2p2(p − k1)2(p − k1 − k2)2
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NLO Monte Carlo programs

Two programs for 3 jet production at Hadronic colliders
Kilgore, Giele, hep-ph/9610433, Nagy,hep-ph/0307268

The virtual corrections to the pure QCD processes are the easiest
to calculate but the impact of processes leading to leptons, heavy
quarks and missing energy is expected to be the larger.

Many low multiplicity processes involving vector bosons, top
quarks, heavy quarks are included in the the parton level Monte
Carlo program MCFM.
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MCFM overview
John Campbell and R.K. Ellis

Parton level cross-sections predicted to NLO in αS

pp̄ → W±/Z pp̄ → W+ + W−

pp̄ → W± + Z pp̄ → Z + Z
pp̄ → W± + γ pp̄ → W±/Z + H
pp̄ → W± + g? (→ bb̄) pp̄ → Zbb̄
pp̄ → W±/Z + 1 jet pp̄ → W±/Z + 2 jets

pp̄(gg) → H pp̄(gg) → H + 1 jet

pp̄(V V ) → H + 2 jets pp̄ → t + X
pp → t + W

⊕ less sensitivity to µR, µF , rates are better normalized, fully
differential distributions.

	 low particle multiplicity (no showering), no hadronization, hard

to model detector effects
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MCFM Information

Version 4.1 (January 05) available at:
http://mcfm.fnal.gov

Improvements over previous releases:

? more processes (Z + b, single top, . . .)

? better user interface

? support for PDFLIB, Les Houches PDF accord
(−→ PDF uncertainties)

? ntuples as well as histograms

? unweighted events

? Pythia/Les Houches generator interface (LO)

? separate variation of factorization and renormalization scales

? ‘Behind-the-scenes’ efficiency
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W/Z+ jet cross-sections

The W/Z + 2 jet cross-section has been calculated at NLO and

should provide an interesting test of QCD (cf. many Run I studies

using the W/Z + 1 jet calculation in DYRAD)

For instance, the theoretical prediction for the number of events
containing 2 jets divided by the number containing only 1 is greatly
improved.
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D0 data: Z + jets
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Jets and heavy flavour at the LHC

The large gluonic contribution appearing in Wbb̄ for the first time

at NLO results in a large correction and poor scale dependence.

(a) (b) (c)

Diagrams by MadGraph
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An experimenter’s wishlist
Run II Monte Carlo Workshop

Single Boson Diboson Triboson Heavy Flavour

W+ ≤ 5j WW+ ≤ 5j WWW+ ≤ 3j tt̄+ ≤ 3j
W + bb̄ ≤ 3j W + bb̄+ ≤ 3j WWW + bb̄+ ≤ 3j tt̄ + γ+ ≤ 2j
W + cc̄ ≤ 3j W + cc̄+ ≤ 3j WWW + γγ+ ≤ 3j tt̄ + W+ ≤ 2j
Z+ ≤ 5j ZZ+ ≤ 5j Zγγ+ ≤ 3j tt̄ + Z+ ≤ 2j
Z + bb̄+ ≤ 3j Z + bb̄+ ≤ 3j ZZZ+ ≤ 3j tt̄ + H+ ≤ 2j
Z + cc̄+ ≤ 3j ZZ + cc̄+ ≤ 3j WZZ+ ≤ 3j tb̄ ≤ 2j
γ+ ≤ 5j γγ+ ≤ 5j ZZZ+ ≤ 3j bb̄+ ≤ 3j
γ + bb̄ ≤ 3j γγ + bb̄ ≤ 3j
γ + cc̄ ≤ 3j γγ + cc̄ ≤ 3j

WZ+ ≤ 5j
WZ + bb̄ ≤ 3j
WZ + cc̄ ≤ 3j
Wγ+ ≤ 3j
Zγ+ ≤ 3j
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Tensor one-loop diagrams

We want to consider tensor integrals of the form

Iµ1...µM =

∫

dDl

iπD/2

lµ1 . . . lµM

d1d2 . . . dN

where di = (l +
∑j=i

j=1 pj)
2 are the standard propagator factors.

Passarino and Veltman (1979) wrote a form factor expansion for
one-loop integrals, with M ≤ N, N ≤ 4. For example,

∫

dDl

iπD/2

lµ

l2(l + p1)2(l + p1 + p2)2
= C1(p1, p2)p

µ
1 + C2(p1, p2)p

µ
2

Contracting with p1 and p2 and using the identities

l ·p1 = 1
2
[(l+p1)

2−l2−p2
1], l ·p2 = 1

2
[(l+p1+p2)

2−(l+p1)
2−p2

2−2p1 ·p2]
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Historical perspective II

We derive a linear equation expressing C1, C2 in terms of scalar
integrals

(

2p1 · p1 2p1 · p2

2p2 · p1 2p2 · p2

)(

C1

C2

)

=

(

R1

R2

)

where R1 = [B0(p1 + p2) − B0(p2) − p2
1 C0(p1, p2)]

and R2 = [B0(p1) − B0(p1 + p2) − (p2
2 + 2p1 · p2) C0(p1, p2)]

C0(p1, p2) =

∫

[dl]
1

l2(l + p1)2(l + p1 + p2)2
, B0(p1) =

∫

[dl]
1

l2(l + p1)2

Solution involves the inverse of the Gram matrix, Gij ≡ 2pi · pj

G−1 =

(

+p2 · p2 −p1 · p2

−p1 · p2 +p1 · p1

)

/[2(p1 · p1 p2 · p2 − (p1 · p2)
2)]
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Historical perspective III

M. Veltman wrote a CDC program for numerical evaluation of the

formfactors in processes with only UV divergences, Utrecht
(1979).

He dealt with exceptional regions, (e.g. regions where the Gram

determinant vanishes), by implementing parts of the program in
quadruple precision.

Translation and improvement by Van Oldenborgh (1990) and
further work on interface by T. Hahn and M. Perez-Victoria (1998).

However this is not sufficient for our needs.

We are interested in processes with more than 4 external legs.

We are often interested in loop processes with collinear and soft
singularities due to the presence of massless particles. These are

most commonly (and elegantly) controlled by dimensional
regularization.
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Bibliography, Tensor reduction

D. B. Melrose, Nuovo Cimento, 1965
In a d dimensional space, a scalar diagram with n > d external

legs can be reduced to a sum of diagrams with d external legs.

Passarino and Veltman, Nucl. Phys. 1979

Binoth et al., hep-ph/0504267, hep-ph/9911342

Denner and Dittmaier, hep-ph/0509141

Giele and Glover, hep-ph/0402152, Giele and Glover and
Zanderighi hep-ph/0407016

Anastasiou and Daleo, hep-ph/0511176
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Recursion relations I

Define generalized scalar integrals

di ≡ (l + qi)
2

qi ≡
i
∑

j=1

pj

qN ≡
N
∑

j=1

pj = 0,

I(D; ν1, ν2, . . . , νN ) = I(D; {νk}N
k=1) ≡

∫

dD l

iπD/2

1

dν1

1 dν2

2 · · · dνN

N

,
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Form-factor expansion
Davydchev

For form factor expansion in terms of the q’s the coefficients are
generalized scalar integrals in shifted dimensionalities

e.g., the rank-1 and rank-2 tensor integrals with N external legs
can be decomposed as

Iµ1(D; q1, . . . , qN ) =
N
∑

i1=1

I(D + 2; {1 + δi1k}N
k=1) qµ1

i1

= I(D + 2; 2, 1, 1, . . . , 1) qµ1

1 + I(D + 2; 1, 2, 1, . . . , 1) qµ1

2

+ · · · + I(D + 2; 1, 1, 1, . . . , 2) qµ1

N .

Iµ1µ2(D; q1, . . . , qN ) = −1

2
I(D + 2; 1, 1, 1, . . . , 1) gµ1µ2

+2 I(D + 4; 3, 1, 1, . . . , 1) qµ1

1 qµ2

1

+ I(D + 4; 2, 2, 1, . . . , 1) (qµ1

1 qµ2

2 + qµ2

1 qµ1

2 ) + · · ·
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Basic identity Tkachev,Chetyrkin,Tarasov,Duplancic,Nizic

∫

dDl

iπD/2

∂

∂lµ





(

∑N
i=1 yi

)

lµ +
(

∑N
i=1 yiq

µ
i

)

dν1

1 dν2

2 · · · dνN

N



 = 0 .

valid for arbitrary yi. Differentiating we obtain the base identity

N
∑

j=1

(

N
∑

i=1

Sjiyi

)

νjI(D; {νk + δkj}N
k=1) = −

N
∑

i=1

yiI(D − 2; {νk − δki}N
k=1)

−



D − 1 −
N
∑

j=1

νj





(

N
∑

i=1

yi

)

I(D; {νk}N
k=1) ,

where S is a kinematic matrix which, for massless internal particles,
takes the form

Sij ≡ (qi − qj)
2
.
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Recursion relations II

Solving
∑

i Sjiyi = δlj (assuming that the inverse of the matrix S

exists), we derive the basic recursion relation

(νl − 1)I(D; {νk}N
k=1)

= −
N
∑

i=1

S−1
li I(D − 2; {νk − δik − δlk}N

k=1)

− bl (D − σ) I(D; {νk − δlk}N
k=1).

σ ≡
N
∑

i=1

νi; bi ≡
N
∑

j=1

S−1
ij ; B ≡

N
∑

i=1

bi =
N
∑

i,j=1

S−1
ij .

The strategy is to reduce more complicated integrals to a set of simpler
basis integrals which are known analytically.
Hence the method is seminumerical.
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Recursion relations (cont)

Example: reduction of boxes, σ =
∑

i νi

Using the basic identity (red lines) and other subsidiary identities

(blue and green lines) one can always arrive at the basis integral,

(four-dimensional box), denoted by a diamond, (or integrals with
fewer external legs).
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H+2 jet calculation

NLO corrections to W -fusion mechanism already calculated by
many authors.

All the elements are in place for a full NLO Higgs + 2 jets

calculation via gluon fusion mechanism

? Born level calculation Higgs + 4 partons

? Real calculation Higgs + 5 partons,
Del Duca et al, Dixon et al, Badger et al

? Virtual calculation Ellis, Giele and Zanderighi, presented here

? Subtraction terms Campbell, Ellis and Zanderighi, in preparation
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Proof of principle
Ellis, Giele, Zanderighi

Use the effective theory (mt → ∞) for Hgg coupling

Leff =
1

4
A(1 + ∆)HGa

µνGa µν .

Ga
µν is the field strength of the gluon field and H is the Higgs-boson

field, A = g2

12π2v where g is the bare strong coupling and v is the

vacuum expectation value parameter, v2 = (GF

√
2)−1 = (246 GeV)2.

∆ is a finite correction. Calculate virtual corrections to

A) H → qq̄q′q̄′, (30 diagrams),

B) H → qq̄qq̄, (60 diagrams),

C) H → qq̄gg, (191 diagrams),

D) H → gggg, (739 diagrams).
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Method

Generate graphs and Form input using Qgraf

Write numerical result for each diagram in terms of

A(p1, . . . , pN ; ε1, . . . , εN ) =

N
∑

M=0

Kµ1···µM
(p1, . . . , pN ; ε1, . . . , εN )

Iµ1···µM (D; q1, . . . , qN ) ,

Reduce tensor integrals numerically to a set of basis integrals

(which are known analytically) by a recursive numerical
procedure.

Check the Ward identities numerically.

Generate complete matrix elements squared by summing over

squares of helicity amplitudes.
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Comparison of numerical and analytic

results for H → four partons
1

ε2
1

ε
1

AB 0 0 12.9162958212387

AV,N -68.8869110466063 -114.642248172519 120.018444115458

AV,A -68.8869110466064 -114.642248172523 120.018444115429

BB 0 0 858.856417157052

BV,N -4580.56755817094 -436.142317955208 26470.9608978350

BV,A -4580.56755817099 -436.142317955660 26470.9608978346

CB 0 0 968.590160211857

CV,N -8394.44805516930 -19808.0396331354 -1287.90574949112

CV,A -8394.44805516942 -19808.0396331363 not known analytically

DB 0 0 3576991.27960852

DV,N -4.29238953553022 ·10
7 -1.04436372655580 ·10

8 -6.79830911471604·10
7

DV,A -4.29238953553022·10
7 -1.04436372655580 ·10

8 not known analytically
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Current research directions
NLO is the first serious approximation in QCD. We should
endeavour to calculate all interesting processes at this level.
MCFM represents a start in this regard, but there is much left to
do.

Stumbling block for higher leg processes: Virtual corrections
There are two approaches to the evaluation of one-loop matrix
elements

? Twistor ‘inspired’ Analytic Methods

? Semi-numerical or numerical methods

We can envisage a synergy between these two approaches.

Calculation of Matrix elements is not sufficient: Results must be
cast in a form where experimenters can use them.

Comparisons of all the Standard Model results amongst

themselves and with data is crucial both for the Tevatron and the
LHC.
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