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β function of QCD.

The β-function of QCD is negative. Terms up to O(α5
S) are known.

α2

S
: Gross and Wilczek ; Politzer

α3

S : W. E. Caswell; D. R. T. Jones; E. Egorian and O. V. Tarasov

α4

S
: O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov;

S. A. Larin and J. A. M. Vermaseren

α5

S
: T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin
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Current experimental results on αS
Bethke,hep-ph/0407021
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The decrease of αS is quite slow
– as the inverse power of a
logarithm.

αS is large at current scales.

Higher order corrections are im-
portant.
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The challenge

The challenge is to provide the most accurate information

possible to experimenters working at the Tevatron and the LHC.

Proton (anti)proton collisions give rise to a rich event structure.

Complexity of the events will increase as we pass from the
Tevatron to the LHC.

The goals

? To provide physics software tools which are both flexible and
give the most accurate representations of the underlying
theories.

? To discover new efficient ways of calculating in perturbative

QCD.
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Hadron-hadron processes
In hard hadron-hadron scattering, constituent partons from each

incoming hadron interact at short distance (large momentum

transfer Q2).
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Form of cross section is
dσ

dX
=

∑

i,j

∑

X̃

∫

dx1dx2 fi(x1, µ
2)fj(x2, µ

2)

× σ̂X̃
ij (αS(µ2), Q2, µ2) F (X̃ → X, µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross

section for parton types i, j and X represents the hadronic final
state.
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Hadron-hadron processes II

Short distance cross section σ̂ij is calculable as a perturbation

series in αS .

Notice that factorization scale is in principle arbitrary: affects only
what we call part of subprocess or part of initial-state evolution
(parton shower).

There are also interactions between spectator partons, leading to

soft underlying event and/or multiple hard scattering. This an

important issue, but I will not talk further about it.
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Approaches to the calculation of σ̂

LO

? Automatic calculation of tree graphs (Madgraph/Helas,

Alpgen, CompHEP, . . .)

? LO + parton shower

? New analytic techniques

NLO

? Analytic techniques for loop diagrams

? Parton level Monte Carlo (MCFM, NLOJET++, . . .)

? Numerical techniques for loop diagrams

? NLO + parton shower (MC@NLO)

NNLO

? a few (mostly) inclusive results are known
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Approaches to the calculation of σ̂

LO

? Automatic calculation of tree graphs (Madgraph/Helas,

Alpgen, CompHEP, . . .) NO

? LO + parton shower NO

? New analytic techniques NO

NLO

? Analytic techniques for loop diagrams NO

? Parton level Monte Carlo (MCFM, NLOJET++, . . .) YES

? Numerical techniques for loop diagrams YES

? NLO + parton shower (MC@NLO) NO

NNLO

? a few (mostly) inclusive results are known NO

The Semi-Numerical Evaluation of One-Loop Corrections – p.8



The role of tree graphs
Problems with tree graphs

? Overall normalization is uncertain.
For example, W+4 jets is O(α4

S). If scale uncertainty changes

αS by 10%, this leads to 40% uncertainty in cross section.

? Sometimes a new parton process appears at NLO, leading to

large change in shapes. (e.g., gluons at the LHC).

For example, for W, Z + n jets at tree graph level.
Madgraph II can generate processes with ≤ 9 external particles

(madgraph.hep.uiuc.edu)
Vecbos, W-boson plus up to 4 jets or a Z-boson plus up to 3 jets
(theory.fnal.gov/people/giele/vecbos.html)

Alpgen, W,Z + up to 6 jets etc, (mlm.home.cern.ch/mlm/alpgen/)

The Semi-Numerical Evaluation of One-Loop Corrections – p.9



Multijet rates using tree graphs

Calculation of tree graphs using off-shell recurrence relations is a
solved problem Berends, Giele.

Draggiotis et al

At 1033 cm−2s−1, left
hand scale gives events
per second

g = 1

Similar calculations are
possible with other pro-
grams Madgraph, Alp-
gen, COMPHEP, . . .
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Why NLO?

The benefits of higher order calculations are:-

Less sensitivity to unphysical input scales (eg. renormalization
and factorization scales)

First prediction of normalization of observables at NLO

? Hence more accurate estimates of backgrounds for new
physics searches.

? Confidence that cross-sections are under control for precision
measurements.

It is a necessary prerequisite for other techniques matching with

resummed calculations, (eg. MC@NLO).

More physics

? Parton merging to give structure in jets.

? Initial state radiation.

? More species of incoming partons enter at NLO.
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? MCFM overview

mcfm.fnal.gov
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MCFM Overview J.Campbell and RKE

(+F. Tramontano, +F. Maltoni, S. Willenbrock)

Downloadable general purpose NLO code, “MCFM”

pp̄ → W±/Z pp̄ → W+ + W−

pp̄ → W± + Z pp̄ → Z + Z
pp̄ → W± + γ pp̄ → W±/Z + H
pp̄ → W± + g? (→ bb̄) pp̄ → Zbb̄
pp̄ → W±/Z + 1 jet pp̄ → W±/Z + 2 jets

pp̄(gg) → H pp̄(gg) → H + 1 jet

pp̄(V V ) → H + 2 jets pp̄ → t + q
pp̄ → H + b pp̄ → Z + b

Knowledge of these processes at NLO provides the first precise

predictions of their event rates, which is used in various ways.

? production of pairs of W ’s and Z ’s: the structure of the weak
interaction at high energy

? W and H production: possibly the first hint of a Higgs boson
at the Tevatron

? H + 2 jets: an important discovery mode at the LHC
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W/Z+jets cross-sections
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Rates at the Tevatron

The W/Z + 2 jet NLO calculation is the most complicated

(time-consuming) process currently implemented. This is due to

both the lengthy virtual matrix elements (vector boson + 4
partons) and the complicated structure of phase space.

The usual features such as reduced scale dependence are
observed, e.g. the theoretical prediction for the number of events
containing 2 jets divided by the number with only 1 is improved.
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Preliminary data
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Vector boson + heavy flavour

In lowest order bottom quark pairs are produced in association
with W ’s by gluon splitting alone:

Beyond LO, the b-quark is treated as a massless particle in MCFM

? a finite cross-section requires a cut on the b-quark pT

? this means that this calculation is not suitable for estimating
the rate with only a single b tag
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Jets and heavy flavour at the LHC

The large gluonic contribution, appearing in Wbb̄ for the first time

at NLO, results in a huge correction and poor scale dependence.

(a) (b) (c)

Diagrams by MadGraph
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NLO calculation

Ingredients in a NLO calculation are

? Born level amplitude

? Real contribution: Addition of one extra parton to Born level
process

? Virtual contribution: Interference of one-loop amplitude with
Born amplitude

Real and virtual separately contain singularities from the soft and
collinear regions which cancel in the sum.

Calculation of one-loop amplitudes rapidly becomes complicated
as number of partons increases.

Especially true as we go beyond the most symmetric cases with
all gluons.
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The future of NLO calculations
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An experimenter’s wishlist
Run II Monte Carlo Workshop

Single Boson Diboson Triboson Heavy Flavour

W+ ≤ 5j WW+ ≤ 5j WWW+ ≤ 3j tt̄+ ≤ 3j
W + bb̄ ≤ 3j W + bb̄+ ≤ 3j WWW + bb̄+ ≤ 3j tt̄ + γ+ ≤ 2j
W + cc̄ ≤ 3j W + cc̄+ ≤ 3j WWW + γγ+ ≤ 3j tt̄ + W+ ≤ 2j
Z+ ≤ 5j ZZ+ ≤ 5j Zγγ+ ≤ 3j tt̄ + Z+ ≤ 2j
Z + bb̄+ ≤ 3j Z + bb̄+ ≤ 3j ZZZ+ ≤ 3j tt̄ + H+ ≤ 2j
Z + cc̄+ ≤ 3j ZZ + cc̄+ ≤ 3j WZZ+ ≤ 3j tb̄ ≤ 2j
γ+ ≤ 5j γγ+ ≤ 5j ZZZ+ ≤ 3j bb̄+ ≤ 3j
γ + bb̄ ≤ 3j γγ + bb̄ ≤ 3j single top
γ + cc̄ ≤ 3j γγ + cc̄ ≤ 3j

WZ+ ≤ 5j
WZ + bb̄ ≤ 3j
WZ + cc̄ ≤ 3j
Wγ+ ≤ 3j
Zγ+ ≤ 3j
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Automatic NLO corrections

What is needed is an automatic procedure to calculate NLO
corrections (MadLoop?).

Current stumbling block is the calculation of virtual corrections.

The virtual corrections contain singularities from the regions of

collinear and soft gluon emission, (and in general also UV

divergences).

Divergences are normally controlled by dimensional
regularization. A completely numerical procedure using, say, a
gluon mass could cause problems with gauge invariance and is
hence deprecated.
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Example: e+e− total rate

Consider the corrections to total e+e− → qq̄ rate.

σqq̄g = 2σ0

αS

π
H(ε)

[

2

ε2
+

3

ε
+

19

2
− π2 + O(ε)

]

.

Soft and collinear singularities in real emisssion amplitudes (a)
are regulated, appearing instead as poles at D = 4.
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Virtual gluon contributions

Virtual gluon contributions (b): using dimensional regularization
again

σqq̄ = 3σ0

{

1 +
2αS

3π
H(ε)

[

− 2

ε2
− 3

ε
− 8 + π2 + O(ε)

]}

.

Adding real and virtual contributions, poles cancel and result is

finite as ε → 0. R is an infrared safe quantity.

R = 3
∑

q

Q2
q

{

1 +
αS

π
+ O(α2

S)
}

.

However the virtual corrections to W+ → ud̄gggg are not so easily
calculated.
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Tensor one-loop diagrams

We want to consider tensor integrals of the form

Iµ1...µM =

∫

dDl

iπD/2

lµ1 . . . lµM

d1d2 . . . dN

where di = (l +
∑j=i

j=1
pj)

2 are the standard propagator factors.

Passarino and Veltman (1979) wrote a form factor expansion for
one-loop integrals, with M ≤ N, N ≤ 4. For example,

∫

dDl

iπD/2

lµ

l2(l + p1)2(l + p1 + p2)2
= C1(p1, p2)p

µ
1 + C2(p1, p2)p

µ
2

Contracting with p1 and p2 and using the identities

l ·p1 = 1

2
[(l+p1)

2−l2−p2
1], l ·p2 = 1

2
[(l+p1+p2)

2−(l+p1)
2−p2

2−2p1 ·p2]
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Historical perspective II

We derive a linear equation expressing C1, C2 in terms of scalar
integrals

(

2p1 · p1 2p1 · p2

2p2 · p1 2p2 · p2

)(

C1

C2

)

=

(

R1

R2

)

where R1 = [B0(p1 + p2) − B0(p2) − p2
1 C0(p1, p2)]

and R2 = [B0(p1) − B0(p1 + p2) − (p2
2 + 2p1 · p2) C0(p1, p2)]

C0(p1, p2) =

∫

[dl]
1

l2(l + p1)2(l + p1 + p2)2
, B0(p1) =

∫

[dl]
1

l2(l + p1)2

Solution involves the inverse of the Gram matrix, Gij ≡ 2pi · pj

G−1 =

(

+p2 · p2 −p1 · p2

−p1 · p2 +p1 · p1

)

/[2(p1 · p1 p2 · p2 − (p1 · p2)
2)]
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Historical perspective III

M. Veltman wrote a CDC program for numerical evaluation of the

formfactors in processes with only UV divergences, Utrecht
(1979).

He dealt with exceptional regions, (e.g. regions where the Gram

determinant vanishes), by implementing parts of the program in
quadruple precision.

Translation and improvement by Van Oldenborgh (1990) and
further work on interface by T. Hahn and M. Perez-Victoria (1998).

However this is not sufficient for our needs.

We are interested in processes with more than 4 external legs.

We are often interested in loop processes with collinear and soft
singularities due to the presence of massless particles. These are

most commonly (and elegantly) controlled by dimensional
regularization.
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Bibliography, Tensor reduction

D. B. Melrose, Nuovo Cimento, 1965
In a d dimensional space, a scalar diagram with n > d external

legs can be reduced to a sum of diagrams with d external legs.

Passarino and Veltman, Nucl. Phys. 1979

Binoth et al., hep-ph/0504267, hep-ph/9911342

Denner and Dittmaier, hep-ph/0509141

Giele and Glover, hep-ph/0402152, Giele and Glover and
Zanderighi hep-ph/0407016

Anastasiou and Daleo, hep-ph/0511176
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Recursion relations I

Define generalized scalar integrals

di ≡ (l + qi)
2

qi ≡
i
∑

j=1

pj

qN ≡
N
∑

j=1

pj = 0,

I(D; ν1, ν2, . . . , νN ) = I(D; {νk}N
k=1) ≡

∫

dD l

iπD/2

1

dν1

1 dν2

2 · · · dνN

N

,
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Form-factor expansion
Davydchev

For form factor expansion in terms of the q’s the coefficients are
generalized scalar integrals in shifted dimensionalities

e.g., the rank-1 and rank-2 tensor integrals with N external legs
can be decomposed as

Iµ1(D; q1, . . . , qN ) =
N
∑

i1=1

I(D + 2; {1 + δi1k}N
k=1) qµ1

i1

= I(D + 2; 2, 1, 1, . . . , 1) qµ1

1 + I(D + 2; 1, 2, 1, . . . , 1) qµ1

2

+ · · · + I(D + 2; 1, 1, 1, . . . , 2) qµ1

N .

Iµ1µ2(D; q1, . . . , qN ) = −1

2
I(D + 2; 1, 1, 1, . . . , 1) gµ1µ2

+2 I(D + 4; 3, 1, 1, . . . , 1) qµ1

1 qµ2

1

+ I(D + 4; 2, 2, 1, . . . , 1) (qµ1

1 qµ2

2 + qµ2

1 qµ1

2 ) + · · ·
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Basic identity Tkachev,Chetyrkin,Tarasov,Duplancic,Nizic

∫

dDl

iπD/2

∂

∂lµ





(

∑N
i=1

yi

)

lµ +
(

∑N
i=1

yiq
µ
i

)

dν1

1 dν2

2 · · · dνN

N



 = 0 .

valid for arbitrary yi. Differentiating we obtain the base identity

N
∑

j=1

(

N
∑

i=1

Sjiyi

)

νjI(D; {νk + δkj}N
k=1) = −

N
∑

i=1

yiI(D − 2; {νk − δki}N
k=1)

−



D − 1 −
N
∑

j=1

νj





(

N
∑

i=1

yi

)

I(D; {νk}N
k=1) ,

where S is a kinematic matrix which, for massless internal particles,
takes the form

Sij ≡ (qi − qj)
2
.
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Recursion relations II

Solving
∑

i Sjiyi = δlj (assuming that the inverse of the matrix S

exists), we derive the basic recursion relation

(νl − 1)I(D; {νk}N
k=1)

= −
N
∑

i=1

S−1

li I(D − 2; {νk − δik − δlk}N
k=1)

− bl (D − σ) I(D; {νk − δlk}N
k=1).

σ ≡
N
∑

i=1

νi; bi ≡
N
∑

j=1

S−1
ij ; B ≡

N
∑

i=1

bi =
N
∑

i,j=1

S−1
ij .

The strategy is to reduce more complicated integrals to a set of simpler
basis integrals which are known analytically.
Hence the method is seminumerical.
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Recursion relations III

Example: reduction of boxes

Using the basic identity (red lines) and other subsidiary identities

(blue and green lines) one can always arrive at the basis integral,

(four-dimensional box), denoted by a diamond, (or integrals with
fewer external legs).
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Two mass triangles

S =





0 p2
2 p2

1

p2
2 0 0

p2
1 0 0



 ,

is singular. By choosing yi which satisfy the relation,
∑

i Sjiyi = aj

a =





1
0
0



 , y =





0
α
p2

2

1−α
p2

1



 ,

and choosing the parameter α such that
∑3

i yi = 0, we derive the re-

cursion relation valid for ν1 > 1 and p2
1 6= p2

2
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Two mass triangles II

Basic identity

N
∑

j=1

(

N
∑

i=1

Sjiyi

)

νjI(D; {νk + δkj}N
k=1) =

−
N
∑

i=1

yiI(D − 2; {νk − δki}N
k=1) − (D − 1 − σ)

(

N
∑

i=1

yi

)

I(D; {νk}N
k=1) ,

With the choices of previous page become

I(D; ν1, ν2, ν3) =
1

p2
1 − p2

2

1

(ν1 − 1)

[

I(D − 2; ν1 − 1, ν2 − 1, ν3)

− I(D − 2; ν1 − 1, ν2, ν3 − 1)
]

.

This relation lowers D/2 by one unit and σ by two units.
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Exceptional regions Ellis, Giele, Zanderighi, hep-ph/0508308

N
∑

j=1

(

N
∑

i=1

Sjiyi

)

νjI(D; {νk + δkj}N
k=1) =

−
N
∑

i=1

yiI(D − 2; {νk − δki}N
k=1) − (D − 1 − σ)

(

N
∑

i=1

yi

)

I(D; {νk}N
k=1) ,

If S has a zero eigenvalue

0 = −
N
∑

i=1

yiI(D−2; {νk−δik}N
k=1)−(D − 1 − σ)

(

N
∑

i=1

yi

)

I(D; {νk}N
k=1) .

If
∑N

i=1
yi 6= 0 one obtains the relation

I(D; {νk}N
k=1) = − 1

D − 1 − σ

N
∑

i=1

yi
∑N

i=1
yi

I(D − 2; {νk − δik}N
k=1) ,

which reduces both D and σ (and possibly N ), while keeping n fixed.
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Exceptional regions II

I(D; {νk}N
k=1) = − 1

D − 1 − σ

N
∑

j=1

yj
∑N

i=1
yi

I(D − 2; {νk − δkj}N
k=1)

− 1

D − 1 − σ

N
∑

j=1

∑N
i=1

Sjiyi
∑N

i=1
yi

νjI(D; {νk + δkj}N
k=1) .
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Proof of principle
Ellis, Giele, Zanderighi

Use the effective theory (mt → ∞) for Hgg coupling

Leff =
1

4
A(1 + ∆)HGa

µνGa µν .

Ga
µν is the field strength of the gluon field and H is the Higgs-boson

field, A = g2

12π2v where g is the bare strong coupling and v is the

vacuum expectation value parameter, v2 = (GF

√
2)−1 = (246 GeV)2.

∆ is a finite correction. Calculate virtual corrections to

A) H → qq̄q′q̄′, (30 diagrams),

B) H → qq̄qq̄, (60 diagrams),

C) H → qq̄gg, (191 diagrams),

D) H → gggg, (739 diagrams).
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Comparison of numerical and analytic

results for H → four partons
1

ε2
1

ε
1

AB 0 0 12.9162958212387

AV,N -68.8869110466063 -114.642248172519 120.018444115458

AV,A -68.8869110466064 -114.642248172523 120.018444115429

BB 0 0 858.856417157052

BV,N -4580.56755817094 -436.142317955208 26470.9608978350

BV,A -4580.56755817099 -436.142317955660 26470.9608978346

CB 0 0 968.590160211857

CV,N -8394.44805516930 -19808.0396331354 -1287.90574949112

CV,A -8394.44805516942 -19808.0396331363 not known analytically

DB 0 0 3576991.27960852

DV,N -4.29238953553022 ·10
7 -1.04436372655580 ·10

8 -6.79830911471604·10
7

DV,A -4.29238953553022·10
7 -1.04436372655580 ·10

8 not known analytically
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H+2 jet calculation

NLO corrections to W -fusion mechanism already calculated by
many authors.

All the elements are in place for a full NLO Higgs + 2 jets

calculation via gluon fusion mechanism

? Born level calculation Higgs + 4 partons

? Real calculation Higgs + 5 partons,
Del Duca et al, Dixon et al, Badger et al

? Virtual calculation Ellis, Giele and Zanderighi, presented above

? Subtraction terms Campbell, Ellis and Zanderighi, in preparation
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Summary

Making an accurate assessment of particle rates and extracting

detailed information from the data requires calculations that go
beyond the simplest approximation.

This is especially true at the LHC where, on average, many more

particles (partons) will be produced per collision.

Next-to-leading order calculations are the first step towards the
precision needed.

I have demonstrated that a semi-numerical approach can provide
interesting results, although the verification in a specific physical
process is not yet complete.

Although MCFM is a tool which provides a step in this direction, it
is certainly not enough.

What is needed is a concerted effort to create an automatic
program, which will return virtual corrections for a process of
arbitrary complexity.
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