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Abstract 

For massless QCD the hard scattering amplitudes are naturally writ- 
ten in terms of the dual color expansion. Here I present this expansion for 
purely gluonic processes and processes involving quark-antiquark pairs and 
gluons. The properties of the sub-amplitudes as w$l as explicit algebraic 
expressions are given for a number of these processes. Also, I demon- 
strate how to recover massless QED amplitudes from the dual expansion 
of massless QCD. 

1 Introduction 

In perturbative QCD the calculation of multi-gluon scattering amplitudes, even 
at tree level, is very challenging. Part of the reason for the difficulty is that up to 
recently there has been no systematic way to efficiently identify the appropriate 
gauge invariant subsets of the full amplitude. Here I summarize what has been 
discovered on how to make this division [‘I. By insuring that the gauge invariant 
subsets are invariant under cyclic permutations of the external gluons tremendous 
cancellations occur at the amplitude level and the sub-amplitudes so defined 
have remarkable factorization properties. The generalization to QCD processes 
involving one or more quark-antiquark pairs is also given. 

‘Invited talk presented by SP at “The Workshop on QED Structure Functions”, University 
of Michigan, Ann Arbor, MI; May 2%25,1989. 
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2 Duality and Gauge Invariance 

Consider au SU(N) Yang-Mills theory, then at tree level in perturbation the- 
ory, any vector particle scattering amplitude, with colors al, a~. . . a,, external 
momenta pl , pl . . . p, and h&cities tl, ES . . . c,,, can be written as 

Mn, = c tr(Xa’~\“...X”“)m(pl,~~;pl,EZ;...;p,,~~), (2.1) 
P--m’ 

where the sum, perm’, is over all (n-l)! non-cyclic permutations of 1,2,. . . , n and 
the X’s are the matrices of the symmetry group in the fundamental representation. 
This expansion is known as the dual expan;ion because of the invariance of the 
sub-amplitudes under cyclic permutations . 

The proof that one can always make this expansion is very simple using the 
identities [X”,X’] = i&f&’ and tr(X”Xb) = Lab. In any tree level Feynman 
diagram, replace the color structure function at some vertex using 

f,& = -(i/&i) tr(X”abX’ - a=abq. (2.2) 

Now each leg attached to this vertex has a X matrix associated with it. At the 
other end of each of these legs there is either another vertex or this is an external 
leg. If there is another vertex, use the X associated with this internal leg to write 
the structure function of this vertex fd X’ as -i [Ad,Xe]/fi. Continue this 
processes until all vertices have been treated in this manner. Then this Feynman 
diagram has been placed in the form of eqn(2.1). Repeating this procedure for 
all Feynman diagrams for a given process completes the proof. 

The sub-amplitudes m( 1,2,. . . ,n) = m(pl, EI;~S, ~2;. . .p,,, E,) of eqn(2.1) 
satisfy a number of important properties and relationships. 

(1) m(l,2,... , n) is gauge invariant. 

(2) 4,2,..., n) is invariant under cyclic permutations of 1,2,. . . ,n 
(3) m(n,n-l)..., l)=(-l)“m(l,2 ,..‘, n) 
(4) The Dual Ward Identity: 

m(l,2,3 ,..., n) + m(2,1,3 ,..., n) + m(2,3,1,..., n) (2.3) 
+ . . . + m(2,3 ,..., 1,n) = 0 

(5) Factorization of m(l, 2,. . . , n) in the soft, collinear and 
multi-gluon pole limits. 

(6) Incoherence to leading order in number of colors: 

,c,, IM,,/’ = N”-a(N* - 1) c {Im(l,2,...,n)l’ + O(N-‘)}. (2.4) 
P-m’ 
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This set of properties for the sub-amplitudes, we will refer to as duality and the 
expansion in terms of these dual sub-amplitudes the dual expansion. Properties 
(1) and (2) can be seen directly from the properties of linear independence, for 
arbitrary N, and invariance under cyclic permutations of tr (AlA’ . . .A”). Whereas 
(3) and (4) follow by studying the sum of Feynman diagrams which contribute to 
each sub-amplitude. The sum of Feynman diagrams which make the Dual Ward 
Identity is such that each diagram is paired with another with opposite sign so 
that the combination contained in eqn(2.3) trivially vanishes. Property (5) will 
be discussed in great detail in section IV and the incoherence to leading order 
in the number of colors (6) follows from the color algebra of the SU(N) gauge 
group. 

To the string theorist this expansion and the duality properties (1) to (6), see 
[2], are quite familar since the string amplitude, in the zero slope limit, repro- 
duces the Yang-Mills amplitude on mass shell [3]. Each sub-amplitude is then 
represented by the zero slope limit of a string diagram, and the sub-amplitude 
could be obtained by using the usual Koba-Nielsen formula [4]. The traces of X 

matrices are just the Chart-Paton factors Is]. For the string amplitude the prop- 
erties (1) through (6) are satisfied even before the zero slope limit is taken. Also 
from the string diagrams it is simple to see which Feynman diagrams contribute 
to a given sub-amplitude, e.g. Fig. 1. The coefficients for the contributing 
diagrams are obtained by the procedure developed earlier in this section for re- 
writing the color factors. The relationship between the string diagram and our 
dual sub-amplitudes suggests that a Yang-Mills amplitude expressed in terms of 
these dual sub-amplitudes will assume a particularly simple form. 

Figure 1: The zero-slope limit of the four gluon string diagram in terms of Feyn- 
man diagrams (tri-gluon couplings only). 

The gauge invariance and properties under cyclic and reverse permutations 
allows the calculation of far fewer than the (n - l)! sub-amplitudes that appear 
in the dual expansion. In fact the number of sub-amplitudes that are needed is 
just the number of different orderings of positive and negative helicities around a 
circle. Of course some of the sub-amplitudes vanish because of the partial helicity 
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conservation of tree level Yang-Mills and others are simply related to one another 
through the properties (2) through (4). 

3 Spinor Products 

To evaluate the sub-amplitudes we have used the helicity basis for the polariza- 
tion vectors which was introduced by Xu, Zhang and Chang[G]. This technique 
requires the introduction of the concept of a spinor product of two light-like mo- 
mentum vectors. We define the following symbols for the chiral spinors associated 
with the light-like momenta, p;, and their spinor products: 

Ii*) E a(1 f 7S)+i) 9 (i f I = a(&1 r 7s) 

(ij) = (i - lj+) , [ij] = (i + lj-) = sign(ppp:)(ji)*. (3.2) 

The important properties of these spinor products that will be needed in this 
paper are that both (ij) and [ij] are odd under interchange of i and j and are 
complex square roots of the Lorentz invariant Sij G’ (pi + pj)‘; 

(ii) E Jlsijl eXP(+ij), (3.3) 

[ij] Z &j exp(i&j) (3.4) 

If both momenta having positive energy, the phase factor ~~j is defined, in a 
popular representation of the gamma matrices, by 

COS&j = 
(PiP,t - P,!PT) 

l/im 

sin&j = 
(PfPj’ - Pj’P,t 1 

&zT’ 

Where p* = (pa f p’) and since all pf = 0 the spinor product for this repre- 
sentation of gamma matrices is undefined for a momentum vector in the minus 
3 direction. If one or more of the momenta in (ij) have negative energy, 4ij 
is calculated with minus the momenta with negative energy and then n?r/2 is 
added to ~;j where n is the number of negative momenta in the spinor product. 
The associated phase factor, &j , for [ij] can be found using equation (3.2) or 
calculated from S;j using the identity Sij c (ij) bi]. 
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4 Factorization Properties 

The most important and remarkable properties of the Yang-Mills dual sub- 
amplitudes are their factorization properties, whose origin can be traced back 
to the string picture. In this section we give the factorization properties of the 
gluon sub-amplitudes in 

(1) the soft gluon limit, 
(2) when two gluons become collinear and 
(3) when three gluons add to form an on mass-shell gluon 

i.e. on the three gluon pole. 

For arbitrary n-gluon scattering these factorization properties of the sub-amplitudes 
will extend up to factorization on the [n/2]-gluon poles. 

First, we consider the soft gluon limit. Consider the sub-amplitudes when 
gluon 1 has an energy which is small compared to all the other energies in the 
process. Then the gluon sub-amplitudes must satisfy 

n(1+,2.. . ,n) i+9 (,,$;)2)} m(2,3...,n) (4.1) 

m(l-,2...,n) i-Zft { ,$$} 42,3-..,n). (4.2) 

The factors in braces are square roots of the eikonal factor 

2 (P* . Pa) 
(Pm .Pl) (PI .Pl)’ 

This soft gluon factorization and the incoherence of these sub-amplitudes to lead- 
ing order in the number of colors, N, leads to the soft gluon factorization of the 
full matrix element squared as proposed by Bassetto, Ciafaloni and Marchesini 

171, 

&J, IJWJ I=‘: T ( (pi<p,‘~[p~.‘,) I-%(2,. . . a n)I’. (4.3) 

In the limit when two gluons become collinear, Altarelli and Parisi [8] demon- 
strated that the double poles associated with this collinear pair do not appear 
in the full amplitude squared i.e. there is a cancellation of one power of the 
propagator of the sum of the two collinear gluons. This cancellation occurs at 
the amplitude level rather than the square of the amplitude in this dual formula- 
tion. Therefore the squared sub-amplitudes diverge no more rapidly than a single 
power of the propagator for the collinear gluons, this is the Altarelli and Parisi 
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observation. The origin of this behaviour of the dual sub-amplitudes stems from 
the factorization properties of string amplitudes. 

To demonstrate this square root divergence of the sub-amplitudes in the 
collinear limit, consider the case when the momenta of particles 1 and 2 be- 
come parallel. Let 1 + z F’ and 2 + (1 - z) P with P’ = 0, and z is the 
momentum fraction of particle 1. Then the sub-amplitudes become 

m(1 ,...) +,2+,3 “4’ 

m(1+,2-,3 ,... 

+ {i!zJ$y) 5jm(P-,3,...) 

m(l-,2-,3,. . .) r-x- m(P-,3,...). 

(4.4) 

(4.5) 

Note that either (12) or [12] app ears in the numerator of each term. Also, it 
is useful to interpret the factor in braces as the “three gluon sub-amplitude” 
in the limit when two gluons become collinear. This three gluon sub-amplitude 
has the square root suppression of the pole as well as having the square root 
of the appropriate Altarelli-Parisi &on-fusion function. From this result and 
the incoherence of the sub-amplitudes in the square of the matrix element the 
standard results of Altarelli and Parisi are obtained in a simple manner. 

The sub-amplitudes also factorize in the three particle channel; here let P = 
1+ 2 + 3, then as P’ + 0 it is easy to see that 

+,‘43,4,5,6) -* +2,3,-P) g m(P,4,5,6) (4.7) 

for the helicity structure three positive and three negative. Since helicity is 
conserved in the four gluon process, the helicity of the intermediate gluon is 
determined for this helicity structure and the four positive - two negative helicity 
sub-amplitude has no three particle poles. 

Of course the full matrix element must also factorize. This is trivial in Feyn- 
man diagram language but here it is not so obvious because of the way we have 
added diagrams together. The color factors almost factorizes for an SU(N) gauge 

g*oup, 

h(X’P...A”) = c tr (A’ . . PX=)tT (X=/P+1 . . A”) (4.6) 
0 

+ it, (Xl.. . X”)h (Am+1 . ..A”). 
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This “factorization” property of the traces follows from the identity 

xX$ A$ = (Si( bjk - $6ij 6JJ). 

The l/N term could destroy the full factorization, but it does not. Terms pro- 
portional to l/N vanish at the pole because of the Dual Ward Identity for the 
sub-amplitudes. Therefore, all the gluon amplitudes discussed in this paper sat- 
isfy, as expected, the factorization property 

M n+n’ -+ ~Mn,l 2 M,++l 

as Pa -+ 0 for n,n’ 2 2. The sum is over the color and helicity of the intermediate 
state. 

5 Pure Gluon Amplitudes 

For four gluon scattering only the helicity conserving amplitudes are non zero. 
Using the convention that all particles are labelled with their helicities and mo- 
menta as if they were outgoing, i.e. the incoming particles have negative energies, 
the h&city conserving sub-amplitudes are given by 

ma+,-(L2,3,4) = -+ 

(IJy[KL]a 

4a s 

(IJ;: 

= iga (12)(23)(34)(41) ’ (5.1) 

The momenta I and J (K and L) in the numerator are the momenta of the negative 
(positive) helicity gluons independent of their ordering in the sub-amplitude, 
whereas the order of the spinor products in the denominator is only determined 
by the order of the momenta in the sub-amplitude. Using the properties of the 
spinor product is simple to demonstrate that eqn(5.1) satisfies the four particle 
Dusl Ward Identity (2.3). 

In squaring the four gluon amplitude and summing over colors the O(N-s) 
terms in eqn(2.4) can be shown to vanish by using only the general properties, 
especially the Dual Ward Identity, of the sub-amplitudes. Therefore, 

E, IMA” = N’(N’ - 1) c b(L2,%4)i2, (5.2) 
P-m’ 

and the square of each sub-amplitude is very simple because the spinor product 
is the square root of twice the dot product. The final result is the standard four 
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gluon matrix element squared. 

gdz, l&l’ = N’(N’ - 1) g4 C slaS,3\3rS,l~ c5m3) r--m’ 
Here we have not averaged over incoming helicities or colors. 

For five gluon scattering only those Feynman diagrams, or part there of, with 
color structure the same as the diagrams of Fig. 2 contribute to the m(l,2,3,4,5) 
sub-amplitude. 

Again, it is a straight forward, simple calculation [l] to show that the only 
nonzero sub-amplitudes have either two or three negative helicity gluons and that 
the three positive - two negative helicity sub-amplitude is given by 

1 
m+a-(L2,3,4,5) = ‘g3(12)(23:fj7a)(45)(51). 

Where I and J are again the momenta of the negative helicity gluons and the 
denominator ordering is determined by the order of the momenta in the sub- 
amplitude. The two positive - three negative helicity amplitude is obtained from 
this last equation by complex conjugation. By using the Fierz properties of the 
spinor product it is easy to demonstrate that eqn(5.4) satisfies the five particle 
Dual Ward Identity, eqn(2.3). 

:&I ,G l&45 + cyclic perms 

Figure 2: The zero-slope limit of the five gluon string diagram in terms of Feyn- 
man diagrams (tri-gluon couplings only). 

Again, the general properties of the sub-amplitude can be used to show that 
the CJ(N-s) terms in eqn(2.4) vanish for the five gluon process giving the following 
standard result (91 that 

5 ,C,, IJ%I’ = 2 N3(N* - 1) 8 pZ, s11s1ss~l~45.51 .(5.5) 
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Here we have not averaged over incoming h&cities or colors. 

For the six gluon process only those Feynman diagrams, or part there of, 
with the same color structure as the diagrams of Fig. 3 contribute to the 
m(l,2,3,4,5,6) sub-amplitude. Then, by using the appropriate reference mo- 
menta for the polarization vectors it is easy to see that the only non-zero sub- 
amplitudes are those with four positive - two negative, two positive - four negative 
and three positive - three negative helicities. After a lengthy calculation we have 
obtained the following expressions for the six gluon sub-amplitudes. 

The sub-amplitudes for the four positive - two negative helicity processes are 
a straight forward generalization of the four and five-gluon sub-amplitudes; 

mr+dL2,3,4,5,6) = 'g4(12)(23)(~~~~156)(61)' (5.6) 

Again, I and .J represent the momenta of the negative helicity gluons. Different 
permutations can be obtained as before by keeping fixed the numerator and 
permuting the momenta in the denominator. The two positive - four negative 
helicity sub-amplitude is obtained from eqn(5.6) by complex conjugation. 

yq5 +$ ((4 

+ $/I+~ + ilk:: 
16 

+ cyclic perms 

Figure 3: The zero-slope limit of the six gluon string diagram in terms of Feynman 
diagrams (tri-gluon couplings only). 

The three positive - three negative helicity sub-amplitudes are not as simple. 
To exhibit the factorization on the three particle channels these sub-amplitudes 
are 

m+s-(1,2,3,4,5,6) = ig' t 
1 

s ,"' s s + t23,s23~~4ssas61 (5.7) 123 11 13 1s 5s 

7= 
+ t316&*S1&31.%2 + 

t113Pr + t234-P + tsrsd 
42.%%4&&&1 1 
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where the rijk Z (pi $ pj i- pk) r = Sij + Sjk + Ski. The coefficients o,p and 
7 for the three distinct orderings of the helicities are given in Table I. With this 
representation it is a simple exercise to show that these sub-amplitudes factorize 
on the three particle pole into a product of two four particle sub-amplitudes, 
eqn(5.1), times the three particle propagator. 

Table I 
Coefficients for the ms+s- Sub-amplitudes: 

where (I]K]J) s (I + ]g * r]J+), which is linear in K 
and if Kr = 0 is given by [IK](KJ). 

1+2+3+4-5-6- 1+2+3-4+5-6- 1+2-3+4-5+6- 
X=1+2+3 Y=1+2+4 2=1+3+5 

; W&4) 

+21(56)(4iYl3) [131(46)(5lZi2) _ 
[241(56)(1iyl3) [511(24)(312/6) 

7 [121(45)(31x16) [121(35)(4lYl6j [351(62)(11214) 

The six gIuon sub-amplitudes satisfy the three distinct Dual Ward Identities 

obtained from the following equation 

m(l,2,3,4,5,6) + m(2,1,3,4,5,6) + m(2,3,1,4,5,6) 

+m(2,3,4,1,5,6) + m(2,3,4,5,1,6) = 0 (5.5) 

using the helicity ordering of the first term as either m(1+,2+,3+,4+,5-,6-), 
m(l+,2+,3+,4-,5-,6-) or m(1+,2-,3+,4-,5+,6-). These three Identities 
are extremely powerful and relate sub-amplitudes with different orderings of the 

helicities. 

Given the simplicity of the sub-amplitudes with two negative helicities and 
aII the others positive, equations (5.1), (5.4) and (5.6), it is obvious that the 
generalization to arbitrary n is 

77x(,-q+z-( 1,2, . . . , n) VJY = ig”-l 
(12)(23) ... (nl) (5.9) 

where once again I and J are the momenta of the negative helicity gluons. Apart 
from this being the natural square root of the expression given by Parke and 
Taylor [lo], [7], it also satisfies the Dual Ward Identity for arbitrary n. 

The complete square of the six-gluon amplitude, including the non-leading 
color terms is 

,c,, IMtd = 

10 



N’(N’ - 1) C,,,l I m(1,2,3,*,5,6) 1’ (5.10) 

+ & (m’(l,2,3,4,5,6)[‘+,3,5,2,6,4) 

+m(l,3,6,4,2,5) + m(l,4,2,6,3,5)] +c.c). 

Note that the sub-amplitudes add incoherently to leading order in the number 
of colors and the simplicity of the non-leading color terms is achieved by the 
properties of the sub-amplitudes, especially the Dual Ward Identity equation 
(2.3). This result together with the expressions for the sub-amplitudes, eqn(5.6) 
and (5.7), can be used to calculate the matrix element squared by evaluating 
the sub-amplitudes as complex numbers. Owing to the simplicity of the sub- 
amplitudes and the simplicity of the leading and non-leading terms in the number 
of colors this method of calculation is appreciable faster than previous numerical 
algorithms [ll], [12]. 

The ordering of the gluons in the non-leading color terms is of particular 
import. These terms are the only possible ones which have no two or three 
particle propagators in common with the original ordering (1,2,3,4,5,6) and as 
such are less singular in the collinear limit than the leading part in N. In fact the 
non-leading color terms are finite in the collinear limit so that in this limit they 
are completely irrelevant compared to the leading color terms. Also by comparing 
numerically the leading to non-leading pieces for N= 3, the non-leading terms 
contribute in general only a few percent to the total cross-section. This result is 
even true in the soft gluon limit. Therefore the non-leading terms can be ignored 
given that this calculation is only to tree level, and the other uncertainties in 
any Monte Carlo application are much larger than this uncertain. The smallness 
of the non-leading color terms and the fact that the leading color terms are just 
the squares of the simple sub-amplitudes implies that the square of this matrix 
element is easy to obtain. 

6 The Addition of Quarks 

The dual basis is modified by the addition of a quark-antiquark pair in the scat- 
tering amplitude in the following way. Consider a quark and an antiquark with 
colors a and CE respectively then we write the amplitude as 

M NW = 1 (PP.. .A”-),, mqq( p,,q; pn,cn; pl,e;...; p,,~)Xb’.l) 
F-m 

where the sum, perm, is over all n! permutation of the gluons. This expansion of 
the quark amplitude in terms of this color basis is well known and in particular 
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was used by Kunszt in Reference [12]. W e will call the color basis in Equation (6.1) 

the quark dual basis[131![14]. 

For the amplitude squared, we have an expression very similar to Equa- 

tion (2.4): 

C IMqvgI* = N”-3(N2 - 1) c {Imgqp(B,q,L~~.,n)i” + O(N-‘)}. (6.2) 
CdOV# (1,...,nl 

Notice however the change in the exponent of the leading power of N. The 
explicit form of the sub-leading terms for n = 2,3,4 is given in reference [14]. 

As in the pure gluon case the amplitudes with all particles or all but one 
particle having the same helicity vanishes at tree level. Also the quark and the 
antiquark must have opposite helicity or otherwise the amplitude vanishes from 
chirality conservation in massless QCD. The amplitudes with one gluon the same 
helicity as the quark or antiquark and all other gluons having the opposite helicity 
have simple expressions: 

II - L -Cl mqq[T>q ,Si 9...79I r..*9%) = ‘9 - 7s bNHql)P2) . - . (4. 
mqq(4-,q+,g: ,... ,!G,...,S,+) = ir” 

(g11von ~I $1 I 
3 (@l~WW . ’ * (4. 

(‘3.3) 

Other amplitudes are more complex, e.g. the general form of the quark- 
antiquark four gluon amplitude has the following pole structure as dictated by 
duality121: 

mqq(Q,%91,t72~93,g4) = ill’ 
[ 

Pl 
+ 

Pl 
tqqlSqqsplS13S34 tq1&s1&4s4q 

P3 
+ t1&1Sl3S4& + 

P. 
sqqs,1s,2sz&4s*q 1 

16.4) 

The numerators Pi are complicated and I refer you to reference [14] for explicit 
expressions for these quantities. The sub-amplitudes defined by equation (6.1) 
have similar properties to the purely gluonic ones in the soft, collinear and multi- 
particle pole limits. 

To construct the QED results from the non-abelian amplitudes all that is 
needed is to replace X,e. in equation (6.1) by &,a, for details see reference [IS]. For 
example one of the helicity amplitudes for the amplitudes involving an electron, 
positron and n photons can be written as 

M(E+,e-;7: ,..., 7; I..., 7:) = ie;; 

(6.5) 
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In this example one can see that for the abelian amplitude the photons are emitted 
independently of each other whereas for the non-abelian amplitude there is a 
correlation between the emitted gluons. 

To extend this quark dual basis to more than one quark antiquark pair I refer 
you to the paper by Mangano [15], and here I briefly sketch the color basis. For 
two quark-antiquark pairs of different flavors with colors a, a’ and 6, 6’ the dual 
color expansion is 

M mwnrr = & (~q%a4nQ+a -$,,454 
* r T 

+ ; (j-J +i(l-I ~)dcs~ ~&&, r) (6.6) 
g r 

where the sum is over all partitions, {u,r}, of all permutations of the n gluons. 
The first term is the contribution in which the color flow connects a to &’ and 
a’ to B whereas the second term comes from the color flow connecting OL to fi 
and a’ to &. For two quark pairs of the same flavor one must add Mqn,rvg to 
M clpc’n+,,,. Similar factorization properties to mqp also hold for m&, and m&,,,,. 

Finally, the simplicity of the hell&y amplitudes with two partons having 
opposite helicity from all the others, eqn(5.9) and (6.3) has start an industry of 
approximation methods for these multi-parton processes, see reference [16] for 
details. 

7 Conclusion 

Here we have demonstrated that the dual color basis is the natural one for QCD 
amplitudes. The sub-amplitudes defined by this basis have remarkable factoriea- 
tion properties and are quite simple given the complexity of processes of QCD. 
From purely gluonic processes to processes involving quarks and other vector 
particles, this basis displays the underlying physics of the process. 
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