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New tool for flavor physics:
» factorization theorems for B-decays in the heavy quark
limit.
s B — ~lv
s B — D
s B— K*v
s B —am

’ L} L} n

» Soft-Collinear Effective Theory
» factorization proofs
s perturbative resummations



1. Factorization in exclusive processes:
» large-@Q? pion form factor,
» Soft-Collinear Effective Theory,
» factorization theorems for B-decays.

2. Degrees of freedom of SCET:

s Strategy of Regions

» processes with light hadrons,

» B-decays

— soft-collinear messenger mode.  TB, Hill, Neubert

3. Construction of the effective theory

» Scalar case

» gauge theory



1. Factorization in effective theory

» Factorization theorem for the pion form factor
» Soft-Collinear Effective Theory
» Factorization in B-decays.




E. g. pion form factor at large Q? = —(p, — p..)?> > Agcp

A

Fr(Q%) = ¢n(p) @ T(Q, 1) ® (1) + 0<§>

Brodsky & Lepage ‘80
Efremov & Radyushkin ‘80

» T(Q,p): hard-scattering kernel (perturbative).

» ¢r(u): pion light-cone wave-function
(non-perturbative, process independent).
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Pion light cone distribution amplitude
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To prove factorization, analyze all QCD diagrams

form

+ 0(A/Q),

and T'(Q, i) i1s Independent of A.
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» First diagram (end-point configuration) is suppressed.

» Gluon in the second and third diagram is off-shell by ©?
— factorization: Fr(Q?) = ¢x(p) @ T(Q, 1) @ éx(10).
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» First diagram unsuppressed.

» Leading contributions from on-shell gluons.
B — « form factor does not factorize.

» Nonfactorizable part fulfills spin-symmetry relations.
FP2T = Ci(E,p) §(E, p) + ¢p(1) @ Ti(E, 1) ® pr (1)
Charles et al., Beneke and Feldmann.




An effective theory for the expansion in A/Q:

» Degrees of freedom: momentum modes that give rise to
singularities in the limit A/Q) — 0.

» “Collinear fields” for each direction of large external
momentum.

» “Messenger fields” couple the different collinear sectors.
» Hard scattering kernels: Wilson coefficients of the operators.
» Wave functions: matrix elements of operators in SCET.

» Factorization: no “messenger” contribution to the matrix
element.



s Simpler to discuss generating functional than graphs.

» Factorization not manifest on the level of individual
diagrams, cancellations.

s Power corrections: higher orders in .

» Can use renormalization group equations in the effective
theory to perform resummation of large (single and
double) logarithms of 3.




s B—> DM Bauer, Pirjol, Stewart 01

no interactions with soft spectator

» B — vylv Lunghi, Pirjol, Wyler "02

no collinear partons BOSCh, Hi”, Lange, Neubert '03

s BY - DO Mantry, Pirjol, Stewart ‘03
sub-leading

s B — M form factor Bauer, Pirjol, Stewart '02

sub-leading Beneke, Feldmann ‘03

Lange, Neubert '03

» B— K*y 1B, Hill, Neubert, hep-ph/soon




» MANY modes. 29 Br measured,?29 constrained, 22 Aqp
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» Factorization theorems proposed.
Beneke, Buchalla, Neubert, Sachrajda '99
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» same structure as form factor.

» Keum, Li and Sanda claim first part to be suppressed
after perturbative (Sudakov) resummation.




2. Degrees of freedom

» Strategy of regions

» for a simple 1d integral

» for the Sudakov form factor (= — = form factor)
s for B — « form factor




Need to expand diagrams in A = A/Q.

» Clearly, expansion does not commute with loop
iIntegration, because integrals develop singularities.
» Strategy of regions:

1. Find integration regions, where integrand becomes
singular.

2. Put cutoffs to separate regions.

3. Approximate integrand in each region, integrate, sum
up different contributions.

4. Cutoff-dependence drops out in the sum.
» Indim. reg. step 2 can be omitted!
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In the sum the dependence on A cancels. Note: First part
has UV, second part IR divergences in A.




* In(l+k) 1
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Use “dim. reg.” instead of cut-off:
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» Soft part (first line): count k£ ~ a, expand integrand.
» Hard part (second line): count k ~ 1 >> a, expand.

» Soft part has UV, hard part IR divergences. Cancel in
the sum.



» Method works for the expansion of multi-loop integrals
s In large masses, large off-shell momenta
s around thresholds (— NRQCD) Beneke & Smirnov
s around Sudakov limit Smirnov
s lattice ints. around continuum limit TB & Melnikov
» Much simpler than working with explicit cut-offs.

» Correspondence to effective theories in dim. reg.




Find singularities of loop integrals in the limit A/@Q and
approximate integrand in each region:

» Occur when propagators go on shell

» Correspond to classical scattering processes
(off-shell propagators = vertices)

» Energetic particle can emit and absorb
s collinear particles
s Soft “messenger” particles




» Different components of the momenta scale different
with large scale @

» Introduce light-like vectors n, and 7,

n=n*=0,n-n=2

s E.g.n,=(1,0,0,1), n, = (1,0,0,—1).
s Split

Pu=2D" n;—l—p n;—l—pu

=Py + Py + Dy
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hard coll.-1 coll.-2 ultra-soft

» All other scalings of £, lead to vanishing integrals (either
scale-less or no pinch-singularities)

» k2 ~ A*/Q? < A? for the ultra-soft region.




» |n factorization proofs, we want to take limit A — Agep.

» Physics at ultra-soft scale becomes non-perturbative
long before A =~ Agep!

» “Such [messenger] modes would correspond to color
fields extending over large distances of order /A% and
do not appear in QCD because of confinement.”

» For the above reasons, these modes were not
introduced in SCET for exclusive processes.

— No interactions between different collinear sectors.
— Everything factorizes!



» Cannot “correct” perturbation theory by omitting modes
with virtualities below A, however, cannot trust
perturbative result if they contribute: Factorization
breaks down.

» Factorization at leading order = messenger modes do
not contribute at leading order.
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Hard (A0, 2000 A0

Soft (AL AL AL | A2
Collinear (A2, 0000 | A2




Hard (A2, AV, \0) A\

Hard-collinear (AL, A0, \2) Al
Soft (AL AL AL | A2
Collinear (A2, 20, A1) )2




Hard (A2, AV, \0) A\
Hard-collinear (AL, A0, \2) Al
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Soft-collinear | (A2, A1, A%/2) | A3




Same result as for anti-collinear-collinear case:
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but Q? = —(p — 1)? is O(A) “hard-collinear” instead of hard

and % is O(A3/E) “soft-collinear” instead of ultra-soft.
e CECHEON 1 Bl Pl Trry _p2940




3. Soft-Collinear Effective Theory




Construct Lagrangian which gives
the strategy of region Feynman rules.

» Fields for each momentum mode
» Vertices for off-shell propagators

» Expansion of propagators in small momentum
components
(“label formalism”, Bauer et. al. )
+ derivative expansion of the fields
(“Multipole expansion”, Beneke et. al. )




A

- 1 2 3
Ly = 5(8,@) + aqb
Split ¢ = ¢1 + ¢2 + ¢us and expand:

L £¢3 — ‘Cqb? + £¢§ + £¢%S + LInt

» Without £, each of the three sectors is equivalent to the
full theory.

» Only the external kinematics (sources for the three
fields) makes them different.

» Drop kinematically forbidden terms.
» Multipole expand interactions.
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» Ultra-soft messenger mode contributes only in graphs
which involve both types of collinear fields.
E.Q.

Dus
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since the integral is scaleless.

p




» Introduce collinear,-collinear, current in scalar SCET.

.................

» Determine the order of the various terms in L.g.

» Derive Feynman rules. (Note: Momentum is not
conserved at the vertices)

» Calculate scalar Sudakov form factor. (One finds that,
exactly as in QCD, all regions contribute at leading
order.)



» Gauge invariance complicates construction of the
effective theory.

» Separate gauge transformations for the different modes.

» Constraints:
» Sum of the fields has to transform as the QCD field

s Gauge transformations must respect power counting:
Messenger modes do not transform under collinear
gauge transformations.

» Can redefine fields, so that £ is invariant under gauge
transformations, that are homogeneous in .

Beneke et. al. , '02
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» ldentified degrees of freedom; constructed effective
Lagrangian to sub-leading order. TB, Hill, Neubert '03

» Anomalous dimensions of leading-order currents and
four-quark operators. TB, Hill, Lange, Neubert 03

» Framework has been used to analyze B — = form factor:
s nonfactorizable part of the form factor evolves like
leading order current

» No perturbative (Sudakov) suppression of the

non-factorizable part.
Lange, Neubert '03




s Formalism for analyzing B-decays into energetic light
particles is in place.

s B — 7 form factor analyzed. B — M, M, is next...




» Don't kill the messenger.
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