Sterile Neutrinos: Induced Mass Versus Direct Mixing Effects of Active Neutrinos

Renata Zukanovich Funchal

Universidade de São Paulo, Brazil

Fermilab – July 27, 2006
Effects of New Neutrino States

Neutrino Neutrality Opens Unique Possibility
- can have Majorana mass terms
- can mix with singlets of the SM symmetry group

Effects of Mixing with Sterile
- **direct:** produce dynamical effects on ν conversion
- **indirect:** modify the mass matrix of active neutrinos

Effects of New Neutrino States

Neutrino Neutrality Opens Unique Possibility
- can have Majorana mass terms
- can mix with singlets of the SM symmetry group

Effects of Mixing with Sterile
- direct: produce dynamical effects on ν conversion
- indirect: modify the mass matrix of active neutrinos

Effects of New Neutrino States

Neutrino Neutrality Opens Unique Possibility
- can have Majorana mass terms
- can mix with singlets of the SM symmetry group

Effects of Mixing with Sterile
- **direct**: produce dynamical effects on ν conversion
- **indirect**: modify the mass matrix of active neutrinos

Effects of New Neutrino States

Neutrino Neutrality Opens Unique Possibility
- can have Majorana mass terms
- can mix with singlets of the SM symmetry group

Effects of Mixing with Sterile
- direct: produce dynamical effects on ν conversion
- indirect: modify the mass matrix of active neutrinos

Effects of New Neutrino States

Neutrino Neutrality Opens Unique Possibility
- can have Majorana mass terms
- can mix with singlets of the SM symmetry group

Effects of Mixing with Sterile
- **direct**: produce dynamical effects on ν conversion
- **indirect**: modify the mass matrix of active neutrinos

No clear observational evidences exist. But . . .

There are some interesting hints . . .

- LSND result as (3+1) or (3+2) oscillations (MiniBooNE)
- keV neutrinos may be (Warm) Dark Matter
- Observed velocities of pulsars
- Early reionization of the universe due S radiative decay
No clear observational evidences exist. But . . .

There are some interesting hints . . .

- LSND result as (3+1) or (3+2) oscillations (MiniBooNE)
- keV neutrinos may be (Warm) Dark Matter
- Observed velocities of pulsars
- Early reionization of the universe due S radiative decay
No clear observational evidences exist. But . . .

There are some interesting hints . . .

- LSND result as (3+1) or (3+2) oscillations (MiniBooNE)
- keV neutrinos may be (Warm) Dark Matter
- Observed velocities of pulsars
- Early reionization of the universe due S radiative decay
No clear observational evidences exist. But . . .

There are some interesting hints . . .

- LSND result as (3+1) or (3+2) oscillations (MiniBooNE)
- keV neutrinos may be (Warm) Dark Matter
- Observed velocities of pulsars
- Early reionization of the universe due S radiative decay
No clear observational evidences exist. But . . .

There are some interesting hints . . .

- LSND result as (3+1) or (3+2) oscillations (MiniBooNE)
- keV neutrinos may be (Warm) Dark Matter
- Observed velocities of pulsars
- Early reionization of the universe due S radiative decay
Suppose active neutrinos $\nu_a = (\nu_e, \nu_\mu, \nu_\tau)^T$ acquire (eg. via seesaw) the Majorana mass matrix

$$m_a = \begin{pmatrix} m_{ee} & m_{e\mu} & m_{e\tau} \\ m_{\mu e} & m_{\mu\mu} & m_{\mu\tau} \\ m_{\tau e} & m_{\tau\mu} & m_{\tau\tau} \end{pmatrix}$$

Assume:

- $m_a \leq 1$ eV
- active ν mix with a single sterile S via $m_{aS}^T = (m_{eS}, m_{\mu S}, m_{\tau S})$
- S: mass, mixing, new symmetries... (New Physics)
- $m_S \gg m_{\alpha S}, m_a$
Induced Mass Matrix

Suppose active neutrinos \(\nu_a = (\nu_e, \nu_\mu, \nu_\tau)^T \) acquire (eg. via seesaw) the Majorana mass matrix

\[
\begin{pmatrix}
 m_{ee} & m_{e\mu} & m_{e\tau} \\
 m_{\mu e} & m_{\mu\mu} & m_{\mu\tau} \\
 m_{\tau e} & m_{\tau\mu} & m_{\tau\tau}
\end{pmatrix}
\]

Assume:

- \(m_a \leq 1 \, \text{eV} \)
- active \(\nu \) mix with a single sterile \(S \) via \(m_{aS}^T = (m_{eS}, m_{\mu S}, m_{\tau S}) \)
- \(S \): mass, mixing, new symmetries... (New Physics)
- \(m_S \gg m_\alpha S, \ m_a \)
Suppose active neutrinos $\nu_a = (\nu_e, \nu_\mu,\nu_\tau)^T$ acquire (e.g. via seesaw) the Majorana mass matrix

$$m_a = \begin{pmatrix}
 m_{ee} & m_{e\mu} & m_{e\tau} \\
 m_{\mu e} & m_{\mu\mu} & m_{\mu\tau} \\
 m_{\tau e} & m_{\tau\mu} & m_{\tau\tau}
\end{pmatrix}$$

Assume:

- $m_a \leq 1$ eV
- active ν mix with a single sterile S via $m_{aS}^T = (m_{eS}, m_{\mu S}, m_{\tau S})$
- S: mass, mixing, new symmetries... (New Physics)
- $m_S \gg m_{aS}, m_a$
Suppose active neutrinos $\nu_a = (\nu_e, \nu_\mu, \nu_\tau)^T$ acquire (e.g., via seesaw) the Majorana mass matrix

$$m_a = \begin{pmatrix}
 m_{ee} & m_{e\mu} & m_{e\tau} \\
 m_{\mu e} & m_{\mu\mu} & m_{\mu\tau} \\
 m_{\tau e} & m_{\tau\mu} & m_{\tau\tau}
\end{pmatrix}$$

Assume:

- $m_a \leq 1$ eV
- active ν mix with a single sterile S via
 $$m_{aS}^T \equiv (m_{eS}, m_{\mu S}, m_{\tau S})$$
- S: mass, mixing, new symmetries... (New Physics)
- $m_S \gg m_{aS}, m_a$
Suppose active neutrinos $\nu_a = (\nu_e, \nu_\mu, \nu_\tau)^T$ acquire (eg. via seesaw) the Majorana mass matrix

$$
\begin{pmatrix}
 m_{ee} & m_{e\mu} & m_{e\tau} \\
 m_{\mu e} & m_{\mu\mu} & m_{\mu\tau} \\
 m_{\tau e} & m_{\tau\mu} & m_{\tau\tau}
\end{pmatrix}
$$

Assume:
- $m_a \leq 1 \text{ eV}$
- active ν mix with a single sterile S via $m_{aS}^T \equiv (m_{eS}, m_{\mu S}, m_{\tau S})$
- S: mass, mixing, new symmetries... (New Physics)
- $m_S \gg m_{\alpha S}, m_a$
Induced Mass Matrix

In the basis \((\nu_a, S)\)

\[
\begin{pmatrix}
 m_a & m_{aS} \\
 m^T_{aS} & m_S
\end{pmatrix}
\]

so since \(m_S \gg m_{\alpha S}, m_a\) after block diagonalization the light neutrinos mass matrix becomes

\[
m_\nu \approx m_a + m_I
\]

where

\[
m_I \equiv -\frac{1}{m_S} (m_{aS}) \times (m_{aS})^T
\]

is the induced mass matrix due to active-sterile mixing
Defining the active - sterile mixing angles

\[\sin \theta_{jS} \approx \frac{m_{jS}}{m_S} \]

we can write the induced masses as

\[(m_I)_{ij} = - \sin \theta_{iS} \sin \theta_{jS} m_S \]

combination of parameters which determines physical effects

For flavor blind mixing \(\Rightarrow m_I = - \sin^2 \theta_S m_S \)
Induced Mass Matrix

Defining the active-sterile mixing angles

\[\sin \theta_{jS} \approx \frac{m_{jS}}{m_S} \]

we can write the induced masses as

\[(m_I)_{ij} = - \sin \theta_{iS} \sin \theta_{jS} m_S \]

combination of parameters which determines physical effects

For flavor blind mixing \(\Rightarrow \quad m_I = - \sin^2 \theta_S m_S \)
The neutrino mass matrix elements in the flavor basis:

\[m_{\alpha\beta} = m_1 e^{-i2\lambda_1} U_{\alpha_1}^{*} U_{\beta_1}^{*} + m_2 U_{\alpha_2}^{*} U_{\beta_2}^{*} + m_3 e^{-i2\lambda_3} U_{\alpha_3}^{*} U_{\beta_3}^{*} \]

with \(\alpha, \beta = e, \mu, \tau \) and \(\Delta m^2_{ij} = m_i^2 - m_j^2 \)

CP-violating phases: \(0 \leq \lambda_i \leq \pi \) and \(0 \leq \delta \leq \pi/2 \)

\[U_{\alpha i}(\theta_{12}, \theta_{13}, \theta_{23}, \delta) = \text{PMNS matrix elements} \]
Reconstructed Neutrino Mass Matrix

use best fit values to reconstruct mass matrix from data

\[|\Delta m^2_{32}| = 2.4 \left(1.00 \pm 0.11\right) \times 10^{-3} \text{ eV}^2 \]

\[\Delta m^2_{21} = 7.92 \left(1.00 \pm 0.045\right) \times 10^{-5} \text{ eV}^2 \]

\[\sin^2 \theta_{23} = 0.44 \left(1.00 \pm 0.21\right) \quad \sin^2 \theta_{12} = 0.314 \left(1.00 \pm 0.09\right) \]

\[\sin^2 \theta_{13} = 0.9 \left(1.0 \pm 3.1\right) \times 10^{-2} \]

Normal Hierarchy (in meV)

\[m_3 = \sqrt{\Delta m_{31}^2} > m_2 = \sqrt{\Delta m_{21}^2} > m_1 = 0 \]

<table>
<thead>
<tr>
<th>Best Fit</th>
<th>[m_\nu = \begin{pmatrix} 3.2 & 6.0 & 0.6 \ 24.8 & 21.4 & 30.7 \end{pmatrix}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. Allowed (1σ)</td>
<td>[m_\nu = \begin{pmatrix} 2.5 - 5.0 & 2.7 - 9.8 & 0. - 5.1 \ 19.9 - 30.3 & 18.1 - 22.9 & 24.5 - 34.0 \end{pmatrix}]</td>
</tr>
<tr>
<td>Free CP phases</td>
<td>[m_\nu = \begin{pmatrix} 0.3 - 5.0 & 0. - 10.8 & 0. - 11.1 \ 12.7 - 30.9 & 18.5 - 29.4 & 16.7 - 34.5 \end{pmatrix}]</td>
</tr>
</tbody>
</table>

\[\delta m_{ee} \sim 2.5 \text{ meV} \quad \delta m_{e\mu, e\tau, \mu\tau} \sim 5 \text{ meV} \quad \delta m_{\mu\mu, \tau\tau} \sim 10 \text{ meV} \]
Inverted Hierarchy (in meV)

$$m_2 \sim m_1 \sim \sqrt{\left| \Delta m^2_{31} \right|} > m_3 = 0$$

<table>
<thead>
<tr>
<th>Best Fit</th>
<th>(m_\nu = \begin{pmatrix} 48.0 & 2.8 & 3.7 \ 27.4 & 24.0 & 21.7 \end{pmatrix})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (1(\sigma))</td>
<td>(m_\nu = \begin{pmatrix} 43.2 - 51.0 & 0. - 8.6 & 0. - 9.2 \ 21.3 - 31.9 & 21.3 - 25.6 & 17.8 - 28.2 \end{pmatrix})</td>
</tr>
<tr>
<td>Free CP phases</td>
<td>(m_\nu = \begin{pmatrix} 11.4 - 51.0 & 0. - 39.0 & 0. - 36.7 \ 0. - 32.1 & 4.6 - 26.7 & 0. - 28.2 \end{pmatrix})</td>
</tr>
</tbody>
</table>

\(\delta m \sim (8 - 10)\) meV but \(\delta m_{\mu\tau} \sim 4\) meV
Degenerate Mass Spectrum (in meV)

\[m_1 \sim m_2 \sim m_3 \sim m_0 = 0.2 \text{ eV} \]

<table>
<thead>
<tr>
<th></th>
<th>(m_\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Fit</td>
<td>(\begin{pmatrix} 200.0 & 0.5 & 0.4 \ 202.7 & 2.9 & \ 203.5 & \end{pmatrix})</td>
</tr>
<tr>
<td>Exp. (1(\sigma))</td>
<td>(\begin{pmatrix} 200.1 - 200.3 & 0.06 - 1.0 & 0. - 1.0 \ 202.1 - 203.6 & 2.4 - 3.3 & \end{pmatrix})</td>
</tr>
<tr>
<td>Free CP phases</td>
<td>(\begin{pmatrix} 60.0 - 200.3 & 0. - 176.6 & 0. - 170.3 \ 0.02 - 203.6 & 0.5 - 200.3 & \end{pmatrix})</td>
</tr>
</tbody>
</table>

\[\delta m \sim 1 \text{ meV} \quad \text{but strong effect of CP phases} \quad \delta m \sim m_0 \]
S Can Generate Tri-Bimaximal Mixing Matrix

Experimental Results are in good agreement with the so-called tri-bimaximal mixing matrix

$$U_{\text{tbm}} = U^{m}_{23} U^{12} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} & 0 \\ -1 & \sqrt{2} & \sqrt{3} \\ 1 & -\sqrt{2} & \sqrt{3} \end{pmatrix}$$

$$\sin^2 \theta_{13} = 0$$
$$\sin^2 \theta_{23} = \cos^2 \theta_{23} = 1/2$$
$$\sin^2 \theta_{12} = 1/3$$
S Can Generate Tri-Bimaximal Mixing Matrix

mass matrix which generates tri-bimaximal in normal hierarchy

\[
m_{\nu} = \frac{\sqrt{|\Delta m_{32}^2|}}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + \frac{\sqrt{|\Delta m_{21}^2|}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
\]

both can be induced by $\nu - S$ mixing

dominant matrix by mixing with S

\[m_{\alpha S} = m_0(0, 1, -1)\]

so

\[m_S \sin^2 \theta_S = \frac{\sqrt{|\Delta m_{32}^2|}}{2} \approx 25 \text{ meV}\]

sub-dominant matrix by universal mixing with S'

\[m_{\alpha S'} = m'_0(1, 1, 1)\]

so

\[m'_S \sin^2 \theta'_S = \frac{\sqrt{|\Delta m_{21}^2|}}{3} \approx 3 \text{ meV}\]

m_a should be very small $\sim v_{EW}^2 / M_{Pl}$
S Can Generate Tri-Bimaximal Mixing Matrix

mass matrix which generates tri-bimaximal in normal hierarchy

\[
m_{\nu} = \frac{\sqrt{|\Delta m^2_{32}|}}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + \frac{\sqrt{|\Delta m^2_{21}|}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
\]

both can be induced by $\nu - S$ mixing
dominant matrix by mixing with S

\[
m_{\alpha S} = m_0(0, 1, -1) \quad \text{so} \quad m_S \sin^2 \theta_S = \frac{\sqrt{|\Delta m^2_{32}|}}{2} \approx 25 \text{ meV}
\]

sub-dominant matrix by universal mixing with S'

\[
m_{\alpha S'} = m'_0(1, 1, 1) \quad \text{so} \quad m'_S \sin^2 \theta'_S = \frac{\sqrt{|\Delta m^2_{21}|}}{3} \approx 3 \text{ meV}
\]

m_a should be very small $\sim \frac{v^2_{\text{EW}}}{M_{\text{Pl}}}$
S Can Generate Tri-Bimaximal Mixing Matrix

mass matrix which generates tri-bimaximal in normal hierarchy

\[
\begin{align*}
m_\nu &= \frac{\sqrt{|\Delta m^2_{32}|}}{2} \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{pmatrix} + \frac{\sqrt{|\Delta m^2_{21}|}}{3} \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\end{align*}
\]

both can be induced by \(\nu - S \) mixing
dominant matrix by mixing with \(S \)

\[
m_\alpha S = m_0(0, 1, -1) \quad \text{so} \quad m_S \sin^2 \theta_S = \frac{\sqrt{|\Delta m^2_{32}|}}{2} \approx 25 \text{ meV}
\]

sub-dominant matrix by universal mixing with \(S' \)

\[
m_\alpha S' = m'_0(1, 1, 1) \quad \text{so} \quad m'_S \sin^2 \theta'_S = \frac{\sqrt{|\Delta m^2_{21}|}}{3} \approx 3 \text{ meV}
\]

\(m_a \) should be very small \(\sim v_{\text{EW}}^2/M_{\text{Pl}} \)
Single S: induced matrix m_I is singular cannot reproduce the dominant structures for degenerate $(\det m \approx m_0^3)$ or inverted mass hierarchy (two dominant eigenvalues and determinant of 1-2 submatrix in non-zero)

S can be the origin of the dominant block only in the case of normal mass hierarchy!
S Can Switch Normal ⇔ Inverted Mass Hierarchy

\[m_\nu^{\text{inv}} \sim \sqrt{2} m_\nu^{\text{norm}} - \sqrt{\frac{\Delta m^2_{32}}{2}} D \]

induced term \(D \) is close to the democratic matrix with all elements being nearly 1
Sterile Giving Negligible Contributions

\(m_1 \) becomes irrelevant if

\[\frac{m_i S m_j S}{m_S} \ll (m_a)_{ij} \]

Effect of \(S \) below \(1\sigma \) spread of matrix elements

Normal Mass Hierarchy

\[
\sin^2 \theta_{eS} m_S < 2 \text{ meV} \quad \sin^2 \theta_{\mu S} m_S, \quad \sin^2 \theta_{\tau S} m_S < 5 \text{ meV}
\]

Inverted Mass Hierarchy

\[
\sin^2 \theta_{eS} m_S < 8 \text{ meV} \quad \sin^2 \theta_{\mu S} m_S < 4 \text{ meV}
\]

but \(\sin^2 \theta_S m_S < 20 \text{ meV} \) (phase)

Degenerate Spectrum

\[
\sin^2 \theta_{eS} m_S < 1 \text{ meV} \quad \text{but} \quad \sin^2 \theta_S m_S \sim 200 \text{ meV} \) (phase)
Some Benchmarks

\[\sin^2 \theta_{\alpha S} m_S < 1 \text{ meV} \] (1)
below 1\(\sigma\) experimental uncertainties for hierarchical spectra can influence sub-leading structure in degenerate spectrum

\[\sin^2 \theta_{\alpha S} m_S < 3 \text{ meV} \] (2)
can generate sub-leading structures in hierarchical spectra

\[\sin^2 \theta_{\alpha S} m_S < 30 \text{ meV} \] (3)
can generate dominant structures in hierarchical spectra
Some Benchmarks

\[\sin^2 \theta_{\alpha S} m_S < 0.5 \text{ eV} \quad (4) \]

maximal allowed value for matrix elements from data
Astrophysical, Cosmological and Laboratory Bounds on $\nu_e - \nu_S$ Mixing

S thermalized before BBN

$m_S \sin^2 \theta_S > 0.6 \text{ meV}$

LSS: gives bound on $\rho_S(m_S)$

X-ray: $S \rightarrow \nu_a \gamma$ with $E_\gamma \approx m_S/2$

CMB: $N_\nu < 3.74$ (WMAP+LSS+SN)

BBN: low and high mass region

SN: $\bar{\nu}_e$-disapp. and star cooling

Accelerator: Violation of Lepton Universality + FCNC + LEP
Astrophysical, Cosmological and Laboratory Bounds on $\nu_\mu - \nu_S$ Mixing

S thermalized before BBN

$m_S \sin^2 \theta_S > 0.4$ meV

LSS: gives bound on $\rho_S(m_S)$

X-ray: $S \rightarrow \nu_a \gamma$ with $E_\gamma \approx m_S/2$

CMB: $N_\nu < 3.74$ (WMAP+LSS+SN)

BBN: low and high mass region

SN: $\bar{\nu}_e$-disapp. and star cooling

Accelerator: Violation of Lepton Universality + FCNC + LEP
Astrophysical, Cosmological and Laboratory Bounds on $\nu_{\tau} - \nu_S$ Mixing

- S thermalized before BBN
 - $m_s \sin^2 \theta_S > 0.4$ meV

- LSS: gives bound on $\rho_S(m_S)$
- X-ray: $S \rightarrow \nu_a \gamma$ with $E_\gamma \approx m_S/2$
- CMB: $N_\nu < 3.74$ (WMAP+LSS+SN)
- BBN: low and high mass region
- SN: $\bar{\nu}_e$-disapp. and star cooling
- Accelerator: Violation of Lepton Universality + FCNC + LEP

$V_s \leftrightarrow \nu_{\tau}$
Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{\alpha S} m_S \lesssim 0.5$ eV)
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound ($\sin^2 \theta_{\alpha S} m_S \lesssim 0.5$ eV)
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{\alpha S} m_S \lesssim 0.5$ eV)
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{\alpha S} m_S \lesssim 0.5$ eV)
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{\alpha S} m_S \lesssim 0.5$ eV)
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300 \text{ MeV}$ and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{\alpha S} m_S \lesssim 0.5 \text{ eV})$
 - bounds dominant contribution to degenerate spectrum
 - contributions out of control: can create ambiguity in implications of mass and mixing results
Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{S\alpha} m_S \lesssim 0.5$ eV)
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

High Mass Window: $m_S \gtrsim 300$ MeV and $\sin^2 \theta_S \lesssim 10^{-9}$

- restricted by CMB, meson decays and SN1987A cooling
- future measurements may improve bound by a factor 10
- $\nu_e - \nu_S$: $0\nu\beta\beta$ can probe the whole region
- other channels: m_I gives the bound $(\sin^2 \theta_{\alpha S} m_S \lesssim 0.5 \text{ eV})$
- bounds dominant contribution to degenerate spectrum
- contributions out of control: can create ambiguity in implications of mass and mixing results
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

Low Mass Window: $m_S \sim (0.1 - 0.3)$ eV and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$

- closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1$ meV
- limited by LSS from above
- if $\Delta N_\nu = 1$ is allowed bounds depend on flavor
 - $\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I
 - $\nu_\mu - \nu_S$: atmospheric ν allow larger regions: e.g. $m_I \sim 10$ meV
 - $\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions $m_I \sim (30 - 250)$ meV
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

Low Mass Window: $m_S \sim (0.1 - 0.3)$ eV and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$

- closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1$ meV
- limited by LSS from above
- if $\Delta N_\nu = 1$ is allowed bounds depend on flavor
- $\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I
- $\nu_\mu - \nu_S$: atmospheric ν allow larger regions: e.g. $m_I \sim 10$ meV
- $\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions $m_I \sim (30 - 250)$ meV
 Regions where m_I effect is greater than direct mixing:

Low Mass Window: $m_S \sim (0.1 - 0.3) \text{ eV}$ and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$

- closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1 \text{ meV}$
- limited by LSS from above
 - if $\Delta N_\nu = 1$ is allowed bounds depend on flavor
 - $\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I
 - $\nu_\mu - \nu_S$: atmospheric ν allow larger regions:
 - e.g. $m_I \sim 10 \text{ meV}$
 - $\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions
 - $m_I \sim (30 - 250) \text{ meV}$
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

Low Mass Window: $m_S \sim (0.1 - 0.3)$ eV and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$

- closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1$ meV
- limited by LSS from above
- if $\Delta N_\nu = 1$ is allowed bounds depend on flavor
 - $\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I
 - $\nu_\mu - \nu_S$: atmospheric ν allow larger regions: e.g. $m_I \sim 10$ meV
 - $\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions $m_I \sim (30 - 250)$ meV
Regions where m_I effect is greater than direct mixing:

Low Mass Window: $m_S \sim (0.1 - 0.3)$ eV and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$

- closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1$ meV
- limited by LSS from above
- if $\Delta N_\nu = 1$ is allowed bounds depend on flavor
- $\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I
- $\nu_\mu - \nu_S$: atmospheric ν allow larger regions: e.g. $m_I \sim 10$ meV
- $\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions $m_I \sim (30 - 250)$ meV
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

<table>
<thead>
<tr>
<th>Low Mass Window: $m_S \sim (0.1 - 0.3)$ eV and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1$ meV</td>
</tr>
<tr>
<td>limited by LSS from above</td>
</tr>
<tr>
<td>if $\Delta N_\nu = 1$ is allowed bounds depend on flavor</td>
</tr>
<tr>
<td>$\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I</td>
</tr>
<tr>
<td>$\nu_\mu - \nu_S$: atmospheric ν allow larger regions:</td>
</tr>
<tr>
<td>e.g. $m_I \sim 10$ meV</td>
</tr>
<tr>
<td>$\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions</td>
</tr>
<tr>
<td>$m_I \sim (30 - 250)$ meV</td>
</tr>
</tbody>
</table>
Confronting Benchmarks with Experimental Bounds

Regions where m_I effect is greater than direct mixing:

Low Mass Window: $m_S \sim (0.1 - 0.3)\ eV$ and $\sin^2 \theta_S = 10^{-3} - 10^{-1}$

- closed for all channels by BBN $\Delta N_\nu < 1 \Rightarrow m_I < 1\ meV$
- limited by LSS from above
- if $\Delta N_\nu = 1$ is allowed bounds depend on flavor
 - $\nu_e - \nu_S$: reactor & atmospheric ν exclude dominant m_I
 - $\nu_\mu - \nu_S$: atmospheric ν allow larger regions: e.g. $m_I \sim 10\ meV$
 - $\nu_\tau - \nu_S$: bound weaker, allowing for dominant contributions
 - $m_I \sim (30 - 250)\ meV$
Confronting Benchmarks with Experimental Bounds

- for $m_S = (10^{-3} - 10^5) \text{ keV}$ effects of direct mixing dominate

 $$m_I \lesssim 4 \cdot 10^{-2} \text{ meV}$$

 only very small corrections to m_a can be produced

- for $m_S = (1 - 10^4) \text{ keV}$ bound even stronger

 $$m_I \lesssim 10^{-2} \text{ meV}$$
if $T_R << 100 \text{ MeV}$ the experimental bounds on $\nu - S$ mixing are relaxed

Sterile neutrino required to explain LSND result is allowed here
Stronger effects of m_1 possible
if \(S \) has a *soft mass* generated by a medium dependent VEV of some new scalar field \(A \) the experimental bounds on \(\nu - S \) mixing are relaxed

\[
m_S = \lambda \langle A \rangle \quad \text{and} \quad \langle A \rangle \propto n_\nu \quad \text{(number density of active \(\nu \))}
\]

\[
m_S = m_S^0 (1 + z)^3
\]

\[
m_I = \frac{m_{IS}^2}{m_S^0 (1 + z)^3} = m_I^0 (1 + z)^{-3}
\]

mixing mass \(m_{IS} \) is constant in time
if S has a soft mass generated by a medium dependent VEV of some new scalar field A the experimental bounds on $\nu - S$ mixing are relaxed.

So

$$\sin \theta_S = \frac{m_{iS}}{m_S^0(1 + z)^3} = \sin \theta_S^0(1 + z)^{-3}$$

$$\sin^2 \theta_S m_S = \frac{\sin^2 \theta_S^0 m_S^0}{(1 + z)^3}$$

in the past all cosmological bounds were satisfied.
Avoiding Bounds
Sterile Interacts with massless or low-mass Majoron

if $S \rightarrow \nu \phi$ (or annihilate) fast enough ($\tau_S \ll 1 \text{s}$) all astrophysical and cosmological bounds could be evaded

if $m_S \sim 1 \text{keV}$ such a fast decay can be achieved for the scalar coupling $g \sim 10^{-8}$

Summary

- $S - \nu$ mixing generate m_I which can be the origin of dominant or sub-dominant structures in m_ν
- Direct mixing effects of S can be observed in cosmology, astrophysics and laboratory experiments
- For $m_S \gtrsim 300$ MeV m_I effects dominate
- For $m_S \sim (10^{-3} - 10^5)$ keV direct mixing effects dominate
- For $m_S \sim (0.1 - 0.3)$ eV the two effects are comparable
- New Physics can relax or even lift cosmological and astrophysical bounds
Summary

- $S - \nu$ mixing generate m_I which can be the origin of dominant or sub-dominant structures in m_ν

- Direct mixing effects of S can be observed in cosmology, astrophysics and laboratory experiments
 - For $m_S \gtrsim 300$ MeV m_I effects dominate
 - For $m_S \sim (10^{-3} - 10^5)$ keV direct mixing effects dominate
 - For $m_S \sim (0.1 - 0.3)$ eV the two effects are comparable

- New Physics can relax or even lift cosmological and astrophysical bounds
Summary

- $S - \nu$ mixing generate m_I which can be the origin of dominant or sub-dominant structures in m_ν

- Direct mixing effects of S can be observed in cosmology, astrophysics and laboratory experiments

- For $m_S \gtrsim 300$ MeV m_I effects dominate

- For $m_S \sim (10^{-3} - 10^5)$ keV direct mixing effects dominate

- For $m_S \sim (0.1 - 0.3)$ eV the two effects are comparable

- New Physics can relax or even lift cosmological and astrophysical bounds
Summary

- $S - \nu$ mixing generate m_I which can be the origin of dominant or sub-dominant structures in m_ν
- Direct mixing effects of S can be observed in cosmology, astrophysics and laboratory experiments
- For $m_S \gtrsim 300$ MeV m_I effects dominate
- For $m_S \sim (10^{-3} - 10^5)$ keV direct mixing effects dominate
- For $m_S \sim (0.1 - 0.3)$ eV the two effects are comparable
- New Physics can relax or even lift cosmological and astrophysical bounds
Summary

- $S - \nu$ mixing generate m_I which can be the origin of dominant or sub-dominant structures in m_ν
- Direct mixing effects of S can be observed in cosmology, astrophysics and laboratory experiments
- For $m_S \gtrsim 300$ MeV m_I effects dominate
- For $m_S \sim (10^{-3} - 10^5)$ keV direct mixing effects dominate
- For $m_S \sim (0.1 - 0.3)$ eV the two effects are comparable
- New Physics can relax or even lift cosmological and astrophysical bounds
Summary

- $S - \nu$ mixing generate m_I which can be the origin of dominant or sub-dominant structures in m_ν
- Direct mixing effects of S can be observed in cosmology, astrophysics and laboratory experiments
- For $m_S \gtrsim 300$ MeV m_I effects dominate
- For $m_S \sim (10^{-3} - 10^5)$ keV direct mixing effects dominate
- For $m_S \sim (0.1 - 0.3)$ eV the two effects are comparable
- New Physics can relax or even lift cosmological and astrophysical bounds