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Outline

• Introduction

• A strategy to constrain or discover non-standard 
interactions (NSI) of neutrinos at neutrino factories 
(qualitative discussions) using bi-probability plots

• Results of our statistical analysis (quantitative 
discussions) on potential to probe NSI

• Summary



• Standard 3 flavors of active massive and mixed 
neutrinos can perfectly explain all the neutrino data 
(except for LSND)

• Mass induced oscillation is the unique mechanism which 
can explain simultaneously all the neutrino data 

• However, there is still some room to have some effect 
coming from new physics (non-standard neutrino 
properties) beyond the Standard Model as subdominant 
effect

Current Status 



• neutrino magnetic moment

• neutrino decay

• non-standard interactions (NSI) with matter

• decoherence

• violation of Lorentz invariance

• CPT violation

• Extra dimensions

• Mass Varying Neutrinos

• Long ragne force

• ..........

Examples of possible sources of non-standard 
neutrino properties  



Leff = −2√2GFεαβ( ναγρLνβ)( f γ
ρPf)fP

We consider the following effective NSI
(Followng e.g., Davidson et al, hep-ph/0302093)

εαβ: paramter which charactrizes 
       the strength of NSI 

f: 1st generation SM fermions, e, u, d 

P = L or R (Projection Operator)



Such kinds of non-standard interactions 
(NSI) of neutrinos can contribute to 

“neutrino oscillation” signal 

(i) via CC interactions in the soucer or 
detector,

or
 (ii) via NC interactions during the 

propagation from the source to detector 



Bounds on NSI, an example

some of these interactions by a factor larger than one[24]. Therefore, generically one can say that
ε < O(1) from energy loss in red giants. We expect, at best, similar results from supernova data or
nucleosynthesis. As we will see, laboratory data already place better limits on νe and νµ NSI, and
SNO, Super-Kamiokande and KamLAND will also improve the bounds for ντ .

We first consider tree level effects of the operators in (2), which contain only the neutrino current
with either the electron or first generation quark currents. Low energy scattering experiments can
constrain NSI involving νe and νµ, while to derive bounds on diagonal ντ NSI one should use the
measurement of the e+e− → νν̄γ cross section at LEP [18] and atmospheric neutrino data [5]. We set
further bounds using the fact that such operators always induce one loop effects in much better tested
charged lepton processes. These constrain flavor changing NSI involving first and second generation
neutrinos to be undetectably small.

3.1 Tree level effects

3.1.1 ν scattering experiments

Neutrino NSI with either electrons or first generation quarks can be constrained by low energy
scattering data. We review previous analysis [19, 18] and update them by including the recent
results of the NuTeV experiment. As we shall see below, the bounds are rather stringent for νµ

interactions, looser for νe and do not exist for (diagonal) ντ .
We present bounds assuming that only one operator is present at a time, for the reasons explained

above, although we also comment on how these limits are relaxed when several diagonal NSI are
considered simultaneously.

• νee → νe scattering

In the presence of neutral current neutrino NSI the νee elastic cross section is given by

σ(νee → νe) =
2G2

FmeEν

π



(1 + ge
L + εeL

ee )2 +
∑

α"=e

|εeL
αe|2 +

1

3
(ge

R + εeR
ee )2 +

1

3

∑

α"=e

|εeR
αe |2



 (4)

where ge
L = −0.2718 and ge

R = 0.2326 are the SM neutral current couplings of the electron,
including electroweak radiative corrections and corresponding to the best fit point of the latest
SM global fit of precision observables (without including NuTeV).

The most accurate measurement of this cross section is the LSND result [27]:

σ(νee → νe) = (1.17 ± 0.17)
G2

FmeEν

π
, (5)

which, taking into account the SM prediction σ(νee → νee)|SM = 1.0967 G2
FmeEν/π, translates

into the following 90% CL bounds on diagonal νee NSI (assuming only one operator at a time):

− 0.07 < εeL
ee < 0.11 (6)

−1. < εeR
ee < 0.5 (7)

We can also set bounds on flavour changing NSI. These are only relevant for ντνe interactions,
because for νµνe better bounds are obtained from the one loop effects discussed in section 3.2.
Assuming there are only flavor changing NSI we obtain:

|εeL
τe | < 0.4 |εeR

τe | < 0.7 (8)

One can wonder how these bounds would be relaxed when allowing for several operators to be
present simultaneously. We consider then both, left- and right-handed diagonal NSI. The result
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Figure 1: Bounds on flavor conserving non-standard νee interactions from LSND experiment. Allowed
regions at 90% CL are between the two ellipses.

is shown in Fig. 1. The 90% CL allowed region is between the two ellipses, and corresponds to
the range

0.445 < (0.7282 + εeL
ee )2 +

1

3
(0.2326 + εeR

ee )2 < 0.725 (9)

• νeq → νq scattering

The CHARM collaboration measured the following combination of νeN and ν̄eN cross sections
[28]:

Re =
σ(νeN → νX) + σ(ν̄eN → ν̄X)

σ(νeN → eX) + σ(ν̄eN → ēX)
= (g̃Le)

2 + (g̃Re)
2 = 0.406 ± 0.140 (10)

Since charged current NSI are strongly constrained, we neglect them and use this measurement
to bound the neutrino neutral current NSI. In this case the effective couplings (g̃Le)2, (g̃Re)2 are
given by

(g̃Le)
2 = (gu

L + εuL
ee )2 +

∑

α!=e

|εuL
αe |2 + (gd

L + εdL
ee )2 +

∑

α!=e

|εdL
αe |2 (11)

(g̃Re)
2 = (gu

R + εuR
ee )2 +

∑

α!=e

|εuR
αe |2 + (gd

L + εdR
ee )2 +

∑

α!=e

|εdR
αe |2 . (12)

The SM couplings corresponding to the best fit are (g̃Le)2 = 0.3042 and (g̃Re)2 = 0.0301. Using
this result, the 90% CL bounds on flavour diagonal NSI are

− 1. < εuL
ee < 0.3 (13)

−0.3 < εdL
ee < 0.3 (14)

−0.4 < εuR
ee < 0.7 (15)

−0.6 < εdR
ee < 0.5 (16)
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 (taken from Davidson et al, 
hep-ph/0302093)



Table 3: Flavour changing four fermion vertices involving two neutrinos and two first generation fermions
(ēe,d̄d or ūu), the best current, and the best future 90 % CL limits that can be set on their coefficients
2
√

2GF ε. See eq. (2) for the definition of ε. The limits from processes marked with an asterisk, ∗), arise
at one loop and are inversely proportional to log(Λ/mW ). We have assumed log(Λ/mW ) > 1 (see section
3.2).

vertex current limits future limit

(ēγρPe)(ν̄τγρLνµ) |εeP
τµ | < 1.2

(τ → µēe)∗)

|εeP
τµ | < 0.1 |εeL

τµ| < 0.04, |εeR
τµ| < 0.02

CHARM II leptonic s2
W at nufact

(ūγρPu)(ν̄τγρLνµ) |εuP
τµ | < 2.8

(τ → µρ)∗)

|εuP
τµ | < 0.05 |εuP

τµ | < 0.03

NuTeV s2
W in DIS at nufact

(d̄γρPd)(ν̄τγρLνµ) |εdP
τµ | < 2.8

(τ → µρ)∗)

|εdP
τµ | < 0.05 |εdP

τµ | < 0.03

NuTeV s2
W in DIS at nufact

(ēγρPe)(ν̄µγρLνe) |εeP
µe | < 5 × 10−4

(µ → 3e)∗)

(ūγρPu)(ν̄µγρLνe) |εuP
µe | < 7.7 × 10−4

(Tiµ → Tie)∗)

(d̄γρPd)(ν̄µγρLνe) |εdP
µe | < 7.7 × 10−4

(Tiµ → Tie)∗)

(ēγρPe)(ν̄τγρLνe) |εeP
τe | < 2.9 |εeL

τe | < 0.02, |εeR
τe | < 0.04

(τ → eēe)∗) leptonic s2
W at nufact

|εeL
τe | < 0.4, |εeR

τe | < 0.7

LSND

(ūγρPu)(ν̄τγρLνe) |εuP
τe | < 1.6 |εuP

τe | < 0.03

(τ → eρ)∗) s2
W in DIS at nufact

|εuP
τe | < 0.5

CHARM

(d̄γρPd)(ν̄τγρLνe) |εdP
τe | < 1.6 |εdP

τe | < 0.03

(τ → eρ)∗) s2
W in DIS at nufact

|εdP
τe | < 0.5

CHARM
26

Table 2: Flavour conserving four fermion vertices involving two neutrinos and two first generation fermions
(ēe,d̄d or ūu), the best current and the best future 90 % CL limits that can be set on the coefficients
2
√

2GF ε of the four fermion vertices. See eq. (2) for the definition of ε. The limits from processes
marked with an asterisk, ∗), arise at one loop and are inversely proportional to log(Λ/mW ). We have
assumed log(Λ/mW ) > 1 (see section 3.2).

vertex current limits future limit

(ēγρPe)(ν̄τγρLντ ) |εeP
ττ | < 0.5 −0.2 < εeL

ττ < 0.3

−0.9 < εeR
ττ < 0.3

(ge
A @ LEP)∗) KamLAND and SNO/SK

(ūγρPu)(ν̄τγρLντ ) |εuL
ττ | < 1.4 −0.3 < εuL

ττ < 0.25

|εuR
ττ | < 3 −0.25 < εuR

ττ < 0.3

(Γinv)∗) KamLAND and SNO/SK

(d̄γρLd)(ν̄τγρLντ ) |εdL
ττ | < 1.1 −0.25 < εdL

ττ < 0.3

|εdR
ττ | < 6 −0.3 < εdR

ττ < 0.25

(Γinv)∗) KamLAND and SNO/SK

(ēγρPe)(ν̄µγρLνµ) |εeP
µµ| < 0.03 |εeL

µµ| < 0.003

|εeR
µµ| < 0.001

CHARM II leptonic s2
W at nufact

(ūγρPu)(ν̄µγρLνµ) |εuL
µµ| < 0.003 |εuL

µµ| < 0.001

−0.008 < εuR
µµ < 0.003 |εuR

µµ | < 0.002

NuTeV s2
W in DIS at nufact

(d̄γρPd)(ν̄µγρLνµ) |εdL
µµ| < 0.003 |εdL

µµ| < 0.0009

−0.008 < εdR
µµ < 0.015 |εdR

µµ | < 0.005

NuTeV s2
W in DIS at nufact

(ēγρPe)(ν̄eγρLνe) −0.07 < εeL
ee < 0.1 |εeL

ee | < 0.0004

−1 < εeR
ee < 0.5 |εeR

ee | < 0.004

LSND leptonic s2
W at nufact

(ūγρPu)(ν̄eγρLνe) −1 < εuL
ee < 0.3 |εuL

ee | < 0.001

−0.4 < εuR
ee < 0.7 |εuR

ee | < 0.002

CHARM s2
W in DIS at nufact

(d̄γρPd)(ν̄eγρLνe) −0.3 < εdL
ee < 0.3 |εdL

ee | < 0.0009

−0.6 < εdR
ee < 0.5 |εdR

ee | < 0.005

CHARM s2
W in DIS at nufact
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Current and future bounds on NSI 
(Davidson et al, hep-ph/0302093)



2

in the flavor basis (α, β = e, µ, τ) is given by 2

i
d

dt





νe

νµ

ντ



 = H





νe

νµ

ντ



 ,

H = U







0 0 0

0 ∆m2

21

2E 0

0 0 ∆m2

31

2E






U † + A





1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ



 , (2)

where ∆m2
jk ≡ m2

j − m2
k is the mass squared difference, E is the neutrino energy, A ≡

√
2GF ne $ 1.0 ×

10−13eV
(

ρ/2.7g · cm−3
)

stands for the magnitude of the standard matter effect, ne is the number density of the
electron in the matter, ρ stands for the matter density, and U is the Maki-Nakagawa-Sakata matrix in the standard

parametrization [1]. εαβ are defined as εαβ ≡
∑

f,P
nf

ne
εfP
αβ $

∑

P

(

εeP
αβ + 3εuP

αβ + 3εdP
αβ

)

, where nf is the number

density of f in matter, and we have taken into account the fact that the number density of u quarks and d quarks
are three times as that of electrons. The striking feature of (2) is that the flavor transition is possible even at high
energy because the last term in (2) is not diagonal, while the transition vanishes at high energy in the standard case.

εfP
αβ is a dimensionless parameter normalized by GF , and theoretically it is expected that εfP

αβ is suppressed by a

factor (W boson mass)2/(new physics scale)2. Experimentally, however, it is known [9] that some of εfP
αβ have a very

weak bound. The result in [9] is given by





−4 < εee < 2.6 |εeµ| < 3.8 × 10−4 |εeτ | < 1.9
−0.05 < εµµ < 0.08 |εµτ | < 0.25

|εττ | < 18.6



 . (3)

Furthermore, it was shown [8] that the measurements of the atmospheric and accelerator neutrinos give non-trivial
constraints on εee, εeτ and εττ . It was found in [8] that a strong constraint applies to the channel νµ → νµ in the high
energy atmospheric neutrino data while there is some freedom left in the channel νe ↔ ντ because neither electron nor
tau events are observed at high energy. From Fig.6 of [8], we can read off the following two approximate constraints:

|εeτ | <∼ |1 + εee|, (4)

ε2eτ $ εττ (1 + εee) . (5)

(5) is the condition for which the survival probability P (νµ → νµ) of the high energy atmospheric neutrinos in the
presence of the new physics is reduced to that in the standard case.

Thus, combining (3), (4) and (5), the region for εαβ that we will use in the following analysis can be summarized as





−4 < εee < 2.6 εeµ = 0 |εeτ | < 1.9
εµµ = 0 εµτ = 0

|εττ | < 1.9



 (6)

together with (4) and (5). For simplicity we will not discuss the complex phases of εαβ in the following.
Before discussing the three flavor case, it is instructive to consider the two-flavor scenario because we can express

the oscillation probability analytically. The Hamiltonian for this case is

U

(

0 0

0 ∆m2

2E

)

U † + A

(

1 + εee εeτ

εeτ εττ

)

. (7)

It is easy to diagonalize the matrix, and we obtain the squared-mass difference ∆m2
M , the mixing θM and the oscillation

probability P (νe → ντ ) at distance L in matter:

(

∆m2
ML

4E

)2

=

(

∆m2L

4E
cos 2θ −

AL

2
(1 + εee − εττ)

)2

2 Throughout this Letter, we assume that the number of light neutrinos is three and there is no unitarity violation.

Summary of Constraints on NSI parameters

Davidson et al, hep-ph/0302093

We consider only (or mainly) the following most 
weakly constrained 3 paramters

εee , εeτ , εττ
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energy atmospheric neutrino data while there is some freedom left in the channel νe ↔ ντ because neither electron nor
tau events are observed at high energy. From Fig.6 of [8], we can read off the following two approximate constraints:

|εeτ | <∼ |1 + εee|, (4)

ε2eτ $ εττ (1 + εee) . (5)

(5) is the condition for which the survival probability P (νµ → νµ) of the high energy atmospheric neutrinos in the
presence of the new physics is reduced to that in the standard case.

Thus, combining (3), (4) and (5), the region for εαβ that we will use in the following analysis can be summarized as
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 (6)

together with (4) and (5). For simplicity we will not discuss the complex phases of εαβ in the following.
Before discussing the three flavor case, it is instructive to consider the two-flavor scenario because we can express

the oscillation probability analytically. The Hamiltonian for this case is

U
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0 0

0 ∆m2

2E

)

U † + A

(

1 + εee εeτ

εeτ εττ

)

. (7)
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M , the mixing θM and the oscillation

probability P (νe → ντ ) at distance L in matter:

(

∆m2
ML

4E

)2

=

(

∆m2L

4E
cos 2θ −

AL

2
(1 + εee − εττ)

)2

2 Throughout this Letter, we assume that the number of light neutrinos is three and there is no unitarity violation.

2

in the flavor basis (α, β = e, µ, τ) is given by 2

i
d

dt





νe

νµ

ντ



 = H





νe

νµ

ντ


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H = U







0 0 0

0 ∆m2
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2E 0

0 0 ∆m2

31

2E






U † + A




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ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ



 , (2)

where ∆m2
jk ≡ m2

j − m2
k is the mass squared difference, E is the neutrino energy, A ≡

√
2GF ne $ 1.0 ×

10−13eV
(

ρ/2.7g · cm−3
)

stands for the magnitude of the standard matter effect, ne is the number density of the
electron in the matter, ρ stands for the matter density, and U is the Maki-Nakagawa-Sakata matrix in the standard

parametrization [1]. εαβ are defined as εαβ ≡
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f,P
nf

ne
εfP
αβ $

∑

P

(
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αβ + 3εuP

αβ + 3εdP
αβ

)
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Furthermore, it was shown [8] that the measurements of the atmospheric and accelerator neutrinos give non-trivial
constraints on εee, εeτ and εττ . It was found in [8] that a strong constraint applies to the channel νµ → νµ in the high
energy atmospheric neutrino data while there is some freedom left in the channel νe ↔ ντ because neither electron nor
tau events are observed at high energy. From Fig.6 of [8], we can read off the following two approximate constraints:

|εeτ | <∼ |1 + εee|, (4)

ε2eτ $ εττ (1 + εee) . (5)

(5) is the condition for which the survival probability P (νµ → νµ) of the high energy atmospheric neutrinos in the
presence of the new physics is reduced to that in the standard case.

Thus, combining (3), (4) and (5), the region for εαβ that we will use in the following analysis can be summarized as





−4 < εee < 2.6 εeµ = 0 |εeτ | < 1.9
εµµ = 0 εµτ = 0

|εττ | < 1.9



 (6)

together with (4) and (5). For simplicity we will not discuss the complex phases of εαβ in the following.
Before discussing the three flavor case, it is instructive to consider the two-flavor scenario because we can express

the oscillation probability analytically. The Hamiltonian for this case is

U

(

0 0

0 ∆m2

2E
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U † + A
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1 + εee εeτ

εeτ εττ

)

. (7)

It is easy to diagonalize the matrix, and we obtain the squared-mass difference ∆m2
M , the mixing θM and the oscillation

probability P (νe → ντ ) at distance L in matter:

(

∆m2
ML

4E
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=
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2 Throughout this Letter, we assume that the number of light neutrinos is three and there is no unitarity violation.

ne : electron number density
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How well Neutrino Factories 
can constrain NSI?

 (incomplete) list of some relevant works

• Gago et al, hep-ph/0105196

• Huber, Schwetz, Valle, hep-ph/011224, 0202048

• Sato, Ota, Yamashita, hep-ph/0112329

• Kopp, Lindner, Ota, hep-ph/0702269

• Yasuda, arXiv:0704.1531

• ..........



Questions we want to answer 
• How can we optimize in order to study non-standard 

interactions (NSI) at neutrino factories?

• To what extent we can probe/constrain non-standard 
neutrino interactions?

• What is the impact of these NSI on the determination 
of the usual mixing parameters? 

assuming the case where θ13  is small and the standard high 

energy (> 20-30 GeV) and longer baseline (> 1000km) 
neutrino factory set up will be build somwhere 



Our strategy to 
constrain/probe NSI at 

Neutrino Factories 



We consider the so called 
Golden Channel or 

          νe → νμ and νe→ νμ

For simplicity, we  consider only 
(mainly) εee , εeτ and εττ for 

propagation and ignore possible impact of 
NSI at source and detection



Then which baseline is the 
best to constrain 

or to discover NSI? 



Some Hint: hep-ph/0612002, by 
Minakata and Uchinami 

Accurate (a few % level) determination 
of the Earth matter density can be done at the 

special baseline so called 
“Magic Baseline”  

(see next slides for definition)

Obs. ρ→ ρ+δρ is completely 
equivalent to add non-zero εee 



What is Magic baseline? 

Lmagic≡ √2π/(GFne)

   ≈ 7200 [4.5 gcm-3/ρ] km

At Lmagic dependence on solar mixing

parameters and CP phase disappear 

Huber, Walter, hep-ph/0301257

(see Smirnov, hep-ph/061098 for theoretical understanding)
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 P(νe→ νμ ) ≈ |√P atme-i(Δ32−δ)
 − √P sol |

2

 = Patm +2 √P atm√P sol cos(Δ32−δ) + Psol

√P atm ≡ sinθ23 sin2θ13  Δ31
 sin(Δ31−aL) 

 Δ31−aL 

√P sol ≡ cosθ23 sin2θ12  Δ21
 sin(aL) 

aL
Δij≡ Δmij

2L/4E a ≡ GFNe/√2

Oscillation Probabilities (Approx.) 

Cervera et al, hep-ph/0002108



 P(νe→ νμ ) ≈ Patm

= sin2θ23 sin22θ13  Δ
2
31

 sin2Δ31 

 (Δ31−π )
2

At Magic Basline, L = √2π/(GFNe)

√P sol  vanish 

No dependence on solar mixing paramters 
and CP phase
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 P(νe→ νμ ) ≈  sin2θ23 sin22θ13  Δ
2
31

+

 sin2Δ31 

 (Δ31−π )
2

At Magic Baseline, for non-zero εeτ  

 (Δ31−π )
2

 4π 
2

 cosθ23sin2θ23 sin2Δ31 

 ×{2(Δ31/π)sinθ13Re[εeτe
iδ]+cosθ23|εeτ|

2}

correction due to εeτ  

standard term  
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Even a few (or less) % level of ε can cause large impact 
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Impact of εeτ is much smaller at L = 3000 km 

One can measure δ and θ13 rather well w/o worryng much 
about NSI (if small) at L = 3000 km 
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Impact of εeμ at 3000 km, see Kopp et al,  hep-ph/0702269

Impact of individual ε at the baseline L = 3000 km



Combination of the 2 baseline ~3000-4000km + 
Magic baseline (~7000km) seem to work well ! 

Experimental setup to optimize the 
determination (by lifting parameter 

degeneracy) of standard mixing paramters
 (w/o NSI) could work well

also to probe NSI w/o spoiling the 
determination of the standard parameters

Large “synergy” effect is expected 



I. ANALYSIS PROCEDURE

We define the χ2 function as follows,

χ2
≡ min

θ13,δ,ε

3
∑

i=1

2
∑

j=1

2
∑

k=1

[

Nobs
i,j,k − N theo

i,j,k (θ13, δ, ε)
]2

N theo
i,j,k (θ13, δ, ε)

, (1)

where Nobs
i,j,k is the number of observed (simulated) events computed by using the given input

parameters and N theo
i,j,k is the theoretically expected number of events to be varied in the fit

by freely varying the mixing and NSI parameters. The summation with respect to indices
i, j and k imply energy (3 bins), baseline (3000 km or 7000 km), and the type of neutrinos
(neutrino or anti-neutrino), respectively. The intervals of 3 energy bins we consider are 4-8
GeV, 8-20 GeV and 20-50 GeV for neutrinos and 4-15 GeV, 15-25 GeV and 25-50 GeV for
anti-neutrinos. For simplicity, we have neglected the systematic errors, considering only the
statistical errors.

The theoretically expected number of events are computed as

N theo(θ13, δ, ε) = nµTM
109NA

m2
µπ

E3
µ

L2

∫ Emax

Emin

g(E)Pνe→νµ(ν̄e→ν̄µ)(E; θ13, δ, ε)dE, (2)

where nµ is the number of useful muon decay per year, T is the exposure period (in year),
M is the detector mass (in k ton), NA is the Avogadro’s number, mµ is the muon mass, Eµ

is the energy of the stored muons and L is the baseline, and Pνe→νµ(ν̄e→ν̄µ)(E; θ13, δ, ε) is the
oscillation probability. In this work, we considered the case where M = 50 kton, T = 4 yr
for both neutrinos and anti-neutrinos, and nµ = 1021 per year. The function g(E) which is
given as

g(E) ≡ 12
E2

E2
µ

(

1 −

E

Eµ

)

σνµ(ν̄µ)(E)

E2
µ

, (3)

contains the unoscillated νe or ν̄e energy spectrum normalized to 1 and the charged current
interaction cross section for νµ and ν̄µ. For simplicity the detection efficiency is assumed
to be 100%, and we have neglected the finite detector resolution. The observed number of
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i: # of bins = 3, j: 3000, 7000km, k:  ν, ν

nμ: # of useful muon decay per year = 1021

T: running period, 4+4 years for  ν and ν
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M: detector mass = 50 kton



Procedure of our statistical analysis (2)

Assuming that NSI paramters are very 
small, we try to get sensitivity as follows  

Input: δ, θ13, all ε’s = 0 (true values)
fix all the other mixing paramters

Fit: We vary δ, θ13, and 2 of ε’s

3 combinations (εee , εeτ),(εττ, εeτ),(εee , εττ)



Results of our statistical analysis (1)
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Results of our statistical analysis (2)
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Results of our statistical analysis (3)
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Results of our statistical analysis (1b)
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Results of our statistical analysis (2b)
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Results of our statistical analysis (3b)
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Results of our statistical analysis (1c)
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Results of our statistical analysis (2c)
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Results of our statistical analysis (3c)
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Results of our statistical analysis (1d)
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Results of our statistical analysis (2d)
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Results of our statistical analysis (3d)
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Summary
• Impact of NSI can be significantly large at the Magic 

basline (~7200 km), a few % NSI could incude a factor 
of ~O(10) or larger effect in terms of probabilities

• Ambiguity (uncertainty) on δ could reduce significantly 
sensitivities to NSI 

• Combination of L ~ 3000 km and the magic basline 
seems to be powerful in probing NSI w/o spoiling the 
original purpuose (pinning down the standard mixing 
parameters)
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