Reheating Metastable O'Raifeartaigh Models

Patrick Fox
LBNL

Jay Wacker
Nathaniel Craig
Layout

- Ancient History
- Metastability and ISS
- Finite temperature ISS
- Classic O’Raifeartaigh models
- Conclusions
Usual SUSY breaking scenario

DSB → Messengers → MSSM
Usual SUSY breaking scenario

Concentrate on this
What do we know about DSBs?

• Affleck, Dine, Seiberg: Spontaneously broken non-anomalous global symmetry *but no flat direction* \Rightarrow SUSY *probably* broken

• Nelson, Seiberg: If symmetry is $U(1)_R$ and general superpotential SUSY *is* broken

• Witten: $\mathrm{Tr}((-1)^F) \neq 0 \Rightarrow$ SUSY *not* broken

Witten index of SU(N) is N, one is lead to chiral theories for DSBs.
A typical example: (Dine, Nelson, Shirman)

$$SU(2N + 5) : (2N + 1) \Box,$$

$$W = \lambda_{ab} \overline{F}^a A \overline{F}^b + W_{ADS}$$

Examples:

3,2 model; 4,1 model; SU(5) model
ISS ask...

Do theories with (global) SUSY vacua also have (local) non-SUSY vacua?

Are they long lived?

If such theories exist are they common?

(Intriligator, Seiberg and Shih; JHEP 0604:021, 2006)
ISS ask...

Do theories with (global) SUSY vacua also have (local) non-SUSY vacua?

Are they long lived?

If such theories exist are they common?

YES!
ISS ask...

Do theories with (global) SUSY vacua also have (local) non-SUSY vacua?

Are they long lived?

If such theories exist are they common?

YES! SQCD!
$N=1$ SQCD, a review

$SU(N_C)$ with N_F flavours ($N_C < N_F < \frac{3}{2}N_C$)

$Q \sim (\Box_{N_C}, \Box_{N_F})$ \quad $Q^c \sim (\Box_{N_C}, \Box_{N_F})$

$W_{el} = m \; \text{tr} Q^c Q$

Seiberg duality

IR, magnetic theory \quad UV, electric theory
Magnetic theory

$SU(N)$ with N_F flavours ($N = N_F - N_C$)

$q \sim (\square_N, \overline{\square}_{N_F}) \quad q^c \sim (\overline{\square}_N, \square_{N_F}) \quad M = (1, \square_{N_F}, \overline{\square}_{N_F})$

\[
W_{mag} = y \ tr \ qMq^c - \mu^2 \ trM
\]

\[
K = q^\dagger q + q^{c\dagger}q^c + M^\dagger M + \mathcal{O}\left(\frac{(q^\dagger q)^2}{\Lambda^2}\right)
\]
Magnetic theory

$SU(N)$ with N_F flavours ($N = N_F - N_C$)

$q \sim (\square_N, \Box_{N_F}) \quad q^c \sim (\Box_N, \square_{N_F}) \quad M = (1, \square_{N_F}, \Box_{N_F})$

$$W_{mag} = y \tr q M q^c - \mu^2 \tr M$$

$$\mu^2 = m \Lambda$$

$$K = q^\dagger q + q^{c\dagger} q^c + M^\dagger M + \mathcal{O} \left(\frac{(q^\dagger q)^2}{\Lambda^2} \right)$$
Magnetic theory

$SU(N)$ with N_F flavours ($N = N_F - N_C$)

$q \sim (\Box_N, \Box_{N_F}) \quad q^c \sim (\Box_N, \Box_{N_F}) \quad M = (1, \Box_{N_F}, \Box_{N_F})$

$W_{mag} = y \ tr qMq^c - \mu^2 \ tr M$

$\mu^2 = m \ \Lambda$

$K = q^\dagger q + q^{c\dagger}q^c + M^\dagger M + \mathcal{O}\left(\frac{(q^\dagger q)^2}{\Lambda^2}\right)$

Kahler corrections will be small if $\mu \ll \Lambda \Rightarrow m \ll \Lambda$
SUSY breaking by rank condition

\[F_{M_i^j} = y q_i^a q_a^c j - \mu^2 \delta_i^j \]

\[F_{q_i} = y M_i^j q_c^j \]

SUSY is broken by rank condition

\[\langle M \rangle = 0 \quad \langle q \rangle \sim \mu \mathbb{1}_N \sim \langle q^c \rangle \]

\[F_M \sim \mu^2 \]

What about the Witten index?
SUSY breaking by rank condition

\[F_{M^j_i} = y q_i^a q_a^{c_j} - \mu^2 \delta^j_i \]

\[F_{q_i} = y M^j_i q^{c_j} \]

SUSY is broken by rank condition

\[\langle M \rangle = 0 \quad \langle q \rangle \sim \mu \mathbb{1}_N \sim \langle q^c \rangle \]

\[F_M \sim \mu^2 \]

What about the Witten index?
SUSY breaking by rank condition

\[F_{M_i^j} = y q_i^a q_a^{c_j} - \mu^2 \delta_i^j \]

\[F_{q_i} = y M_i^j q^{c_j} \]

SUSY is broken by rank condition

\[\langle M \rangle = 0 \quad \langle q \rangle \sim \mu \mathbb{1}_N \sim \langle q^c \rangle \]

\[F_M \sim \mu^2 \quad \text{e.g.} \quad \mu \sim 100 - 1000 \text{TeV} \]

What about the Witten index?
Below scales $\langle M \rangle$ the magnetic quarks decouple

Strong dynamics at Λ_{mag} generates non-perturbative contribution to the potential

$$W_{IR} = \mu^2 \, \text{tr} M + y \, \text{tr} q M q^c + (\det M)^{1/N} \, \Lambda^{-a}$$

$$a = \frac{N_F}{N} - 3 \quad (> 0)$$

Affleck, Dine, Seiberg
Below scales $\langle M \rangle$ the magnetic quarks decouple

Λ_{mag}

Strong dynamics at Λ_{mag} generates non-perturbative contribution to the potential

$W_{IR} = \mu^2 \text{tr}M + y \text{tr}qMq^c + (\det M)^{1/N}\Lambda^{-a}$

Affleck, Dine, Seiberg

Non-renormalizable op. restores SUSY

$a = \frac{N_F}{N} - 3 \ (> 0)$
Non-perturbative restoration of SUSY

\[M \sim \eta \mathbb{1} \Rightarrow W \sim -\mu^2 + \eta^{3+a} \Lambda^{-a} \]

- F-term equations now have a solution, SUSY is unbroken
- SUSY preserving minimum is far out in field space,
 \[\langle M \rangle = \mu \left(\frac{\Lambda}{\mu} \right)^{\frac{a}{2+a}} \mathbb{1}_{N_F} \]

\[(\mu^2 \Lambda^a)^{\frac{1}{2+a}} \]
Cartoon of the potential

\[V_0 = N \Lambda^4 \left| \left(\frac{\eta}{\sqrt{N_F} \Lambda} \right)^{2+a} - \frac{\mu^2}{\Lambda^2} \right|^2 \]
Cartoon of the potential

\[V_0 = N \Lambda^4 \left| \left(\frac{\eta}{\sqrt{N_F \Lambda}} \right)^{2+a} - \frac{\mu^2}{\Lambda^2} \right|^2 \]

Analytic form known for square potential

\[\Gamma \sim \mu^4 e^{-S_4} \]
Tunneling rate

\[\Gamma \sim \mu^4 e^{-S_4} \] with \[S_4 \sim \frac{\Delta \eta^4}{\Delta V} \sim \left(\frac{\Lambda}{\mu} \right)^{\frac{4a}{2+a}} \]

Would like \(1/\Gamma > 14 \) Gyr!

\[
\frac{a}{a+2} \log \frac{\Lambda}{\mu} > 0.73 + 0.003 \log \frac{\mu}{\text{TeV}} + 0.25 \log N
\]

i.e. \(\left(\frac{\Lambda}{\mu} \right)^{\frac{a}{2+a}} \geq 2 \)

Conclusion I:
- **SQCD** is a viable, **simple** DSB; very generic
- **If** we start in the SUSY breaking vacuum **and** \(\frac{\mu}{\Lambda} \ll 1 \)
 we stay there for a long time.
PART II

• After inflation the visible universe was hot
• The DSB may well have been hot too
• \(T \gg \mu \) barrier becomes unimportant
• Minimum of potential is at neither SUSY preserving nor SUSY breaking minimum
• Do we end up in the right place?
Finite temperature field theory

Calculate one loop free energy: \(F = E - T S \)

\[
F \sim \begin{cases} V_0(\eta) & T \ll y\eta \\ V_0(\eta) - T^4 + y^2\eta^2T^2 & T \gg y\eta \end{cases}
\]

Entropy of light states \(\rightarrow \) Thermal mass term

In ISS as \(T \rightarrow \Lambda \) origin becomes minimum

As universe cools what are the order and temperature of the phase transitions in each direction?
1: Quark direction \(q = q^c = \frac{1}{\sqrt{2N}} (\xi 1_N 0) \)

\[
V_0 = N \left(\frac{y}{N^2} \xi^2 - \mu^2 \right)^2 \rightarrow V_0 - c_0 N F T^4 + (c_1 g^2 + c_2 y^2) N \xi^2 T^2
\]

Second order phase transition

\[
T_c \sim \frac{\mu}{\sqrt{yN}}
\]
2: Meson direction \(M = \frac{\eta}{\sqrt{N_F}} \mathbb{I} \)

\[
V_0 = N \Lambda^4 \left| \left(\frac{\eta}{\sqrt{N_F} \Lambda} \right)^{2+a} - \frac{\mu^2}{\Lambda^2} \right|^2
\]

\[
V \sim \begin{cases}
\mu^4 + c_1 y^2 N \eta^2 T^2 - c_0 (N N_F + N^2) T^4 & T \geq \Lambda_m(\eta) \\
V_0 + c_1 y^2 N \eta^2 T^2 - c_0 N N_F T^4 & T \geq y \eta \\
V_0 & T < y \eta
\end{cases}
\]

First order phase transition

\[
T_c \sim \frac{\mu}{(N_F+N)^{1/4}}
\]
Tunneling time

- Use square approximation, now at finite temperature, $\Gamma \sim T^4 e^{-S_3/T}$

$$S_3 \sim \left(\frac{\Lambda}{\mu} \right)^{\frac{3a}{2+a}}$$

- Want universe still in false vacuum, $\Gamma(T)a^3(T)V\Delta t \approx 0$

$$\frac{a}{a+2} \log \frac{\Lambda}{\mu} \gtrsim 0.64 - 0.001 \log \frac{\mu}{\text{TeV}} + 0.17 \log N$$
Second order phase transition, $T_c \sim \mu$

First order phase transition, $T_c \sim \mu$ lifetime controlled by $\frac{\Lambda}{\mu}$

1: $q \neq 0, M = 0$
2: $q = 0, M \neq 0$

$\left(\mu^2 \Lambda^a\right)^{\frac{1}{2+a}}$
Second order phase transition, $T_c \sim \mu$

First order phase transition, $T_c \sim \mu$, lifetime controlled by $\frac{\Lambda}{\mu}$

If you satisfy the zero-temperature lifetime requirement of ISS then you automatically will get the correct cosmology.

$1: q \neq 0, M = 0$

$2: q = 0, M \neq 0$

$\left(\mu^2 \Lambda^a\right)^{\frac{1}{2+a}}$
“Classic” O’Raifeartaigh Models

\[W = m \psi \psi^c + \lambda Z (\psi^2 - \mu^2) \quad (m \gg \mu) \]

Origin is minimum and SUSY is broken, \(F_Z = \lambda \mu^2 \)

Using “retro-fitting” to explain the small scale \(\mu \) leads to

\[W = m \psi^c \psi + \lambda Z (\psi^2 - \mu^2) + \frac{1}{2} \epsilon \mu Z^2 \]

A new SUSY preserving minimum develops at large field value, \(Z_{susy} = \epsilon^{-1} \mu \)
“Classic” O’Raifeartaigh Models

\[W = m \psi \psi^c + \lambda Z (\psi^2 - \mu^2) \quad (m \gg \mu) \]

Origin is minimum and SUSY is broken, \(F_Z = \lambda \mu^2 \)

Using “retro-fitting” to explain the small scale \(\mu \) leads to

\[W = m \psi^c \psi + \lambda Z (\psi^2 - \mu^2) + \frac{1}{2} \epsilon \mu Z^2 \]
“Classic” O’Raifeartaigh Models

\[W = m \psi \psi^c + \lambda Z (\psi^2 - \mu^2) \quad (m \gg \mu) \]

Origin is minimum and SUSY is broken, \(F_Z = \lambda \mu^2 \)

Using “retro-fitting” to explain the small scale \(\mu \) leads to

\[W = m \psi^c \psi + \lambda Z (\psi^2 - \mu^2) + \frac{1}{2} \epsilon \mu Z^2 \]

\[\Delta V \sim \frac{\lambda}{16\pi^2} \mu^4 \]

\[S_4 \sim \left(\frac{\lambda^2}{16\pi^2} \right)^3 \epsilon^{-4} \]
\(T \gg m : \) Origin is stable

\(\mu < T < m : \) Origin no longer stable, barrier very small

\[T \neq 0 \]

\[S_3/T \sim \left(\frac{\lambda}{4\pi} \right)^5 \epsilon^{-3} \frac{\mu}{m} \]

No extra light states at the origin: additional finite temperature constraint
$T \gg m$: Origin is stable

$\mu < T < m$: Origin no longer stable, barrier very small

$T \neq 0$

$\Delta V \sim \frac{\lambda}{16\pi^2} \mu^4$

$S_3 / T \sim \left(\frac{\lambda}{4\pi} \right)^5 \epsilon^{-3} \frac{\mu}{m}$

No extra light states at the origin: additional finite temperature constraint
Thermalization

ISS like models quickly thermalize

• e.g. Imagine after inflation DSB is cold, $T \ll H$
• Oscillations of $Q \sim H$ dominate energy density
• Quickly dampened by particle production at origin

L. Kofman et al.
JHEP5 (2004) 030

• True also in magnetic theory
Conclusions

• SQCD provides a simple, generic DSB sector

• Provided there is a hierarchy ($m \ll \Lambda$) of scales our vacuum is long lived, at zero temperature

• Starting at the origin there are two phase transitions to the two minima. Because of the extra light states at the origin it evolves to the correct minimum

• No (parametrically) different constraints, from thermal history

• Retro-fitted O’Raifeartaigh models do not satisfy these conditions, there is no entropic cost to moving away