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• The Higgs boson can act as a portal to a hidden-
sector of the SM (Schabinger,Wells; Patt,Wilczek)

• Higgs physics is yet to be explored therefore there 
are very few constrains

• The Higgs forms the smallest dimension singlet 
operator: 
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•  We can then write the following operator:

• Then we have different scenarios depending on the 
nature of O:

• Multisinglets

• Hidden-valleys 

• Unparticles

• .....

κ|H|2O

whole new particle sectors

what the heck is this?
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What is an unparticle?

• Georgi reminded us that it is possible that a hidden 
sector could be conformal

• But what is a conformal sector? what implications 
will it have?

• In general, a conformal theory, is one where there is 
exact scale invariance (apart from more technical 
aspects...)

• The first consequence is that on a conformal theory 
there are no masses!!!

Conformal symmetries for dummies!



•  Coupling the SM directly to this conformal sector 
goes at follows:

- First we can imagine the following “normal” 
coupling between the SM and a hidden sector of 
dimension d

- Then we will suppose that the new sector, 
through RGE evolution, will reach an IR conformal 
fixed point

1
Mk

OSMOhid Ohid ≡ qq, λλ, . . . k=dsm+d

Λd−dU

Mk
OSMOU

There is a change
on dimensions!!



• Through this flow, the dynamics of the hidden 
sector are such that the operator acquires a big 
anomalous dimension 

• The theory is describe not in terms of particles but 
in terms of operators like the one coupling to the 
SM

• Because there is conformal symmetry in the theory 
some correlation functions are exactly known:

< OU (x)OU (y) >∼ 1
|x− y|2dU
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• From the structure of the correlator we 
can see that it has the structure of du 
particles:

PU (p2) =
AdU

2 sin(πdU )
i

(−p2 − iε)2−dU

AdU ≡
16π5/2

(2π)2dU

Γ(dU + 1/2)
Γ(dU − 1)Γ(2dU )

Non-trivial 
phase

To match 1-
particle 

propagator
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• Strange shape of angular distribution of cross-
sections due to “fake” fractional number of states  
and complex interference due to the non-trivial 
phase

• Appearance of a continuum spectrum instead of 
isolated resonances

• If conformal invariance is broken at the EW scale 
there can be multiple prompt decays 

• ......

Some experimental consequences:



• I will focus in the case where Ou is a scalar 
unparticle operator with 1<d<2 and with the 
following scalar potential:

• As shown in the previous slides, the Ou has the 
following correlator:

Higgs-unparticle interaction

V0 = m2|H|2 + λ|H|4 + κU |H|2OU

PU (p2) =
AdU

2 sin(πdU )
i

(−p2 − iε)2−dU

AdU ≡
16π5/2

(2π)2dU

Γ(dU + 1/2)
Γ(dU − 1)Γ(2dU )
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• Once the Higgs gets a vev it induces a tadpole for 
Ou and the two fields will mix

• It is convenient to use a deconstructed version for 
the unparticles (van der Bij, Stephanov):

O ≡
∑

n

Fnϕn F 2
n =

AdU

2π
∆2(M2

n)dU−2
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• The potential now reads:

• Imposing that EWSB is broken gives the following 
vev’s for the deconstructed fields:

• And in the continuous limit gives an IR divergence:

V = m2|H|2 + λ|H|4 +
1
2

∑

n

M2
nϕ2

n + κU |H|2
∑

n

Fnϕn

vn ≡ 〈ϕn〉 = −κUv2

2M2
n

Fn

〈OU 〉 = −κUv2

2

∫ ∞

0

F 2(M2)
M2

dM2

F 2(M2) =
AdU

2π
(M2)dU−2



• One way of solving this IR problem is to include the 
following new term in the potential:

• Which in turn generates the following finite vev for 
the unparticle operator (note the mass gap)

• It is interesting to point out that EWSB exists even 
when the origin is a minimum m2 > 0

δV = ζ|H|2
∑

n

ϕ2
n

〈OU 〉 = −κUv2

2

∫ ∞

0

F 2(M2)
M2 + ζv2

dM2

λ = −m2

v2
+

dU

8π
AdU ζdU−2Γ(du − 1)Γ(2− dU )κ2

Uv2dU−4



• Once the true vacuum is found the spectrum is 
obtained diagonalizing the infinite matrix that mixes 
h and φn:

• The inverse of the hh entry corresponds to the 
propagator of the higgs in the interaction basis:

Pole structure & Spectral analysis

M2
hh = 2λv2 ≡ m2

h0

M2
hn = κUvFn

M2
n

M2
n + m2

g

M2
nm = (M2

n + m2
g)δnm

iPhh(p2)−1 = p2 −m2
h0 +

v2κ2
UAdU

2πp4
Γ(dU − 1)Γ(2− dU )

×
[(

m2
g − p2

)dU + dUp2(m2
g)

dU−1 − (m2
g)

dU

]

m2
g ≡ ζv2



Parameter space
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                                        One (real)<mg
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Figure 2: Different zones in the plane (RU , x0 = m2
h0

/m2
g) with different number of Higgs poles:

one in zone I (above mg in zone Ia, below in zone Ib) and two in zone II (both above mg in IIa, one
above and one below in IIb). In the zone labeled “Tachyon” the lightest pole becomes tachyonic.

For small values of the unparticle effect, as measured by the parameter RU (i.e. for

RU ! 1), a perturbative solution gives

m2
h " m2

h0 − m6
g

RU

m4
h0

Re [fU (x0)] , (3.14)

with the sign of the shift determined by the sign of the function fU [3] and

Γh " m6
g

RU

m5
h0

Im [fU (x0)] θ(x0 − 1) . (3.15)

Although the analysis of [3] was not restricted to very small values of RU , the behaviour

of m2
h discussed there was qualitatively similar to the one just described.

New interesting effects occur when larger values of RU are probed. Fig. 1 illustrates

this for the particular case dU = 1.2 and m2
h0

/m2
g = 5 by showing m2

h (solid lines) as a

function of RU . For small RU one simply gets a negative shift for mh (zone marked as Ia).

However, for larger values of RU (RU
>
∼ 1.8) things get much more interesting. In zone IIa

one finds two Higgs poles above mg, one of them very close to the mass gap and the other

closer to the initial value mh0. In zone IIb the lighter of these poles, the phantom Higgs,

7

The Higgs can be embedded in the continuum!!!



•  Let’s examine a particular case with x0=5 and the 
(complex) solutions of the pole equation for du=1.2 
mg=1



•  Let’s examine a particular case with x0=5 and the 
(complex) solutions of the pole equation for du=1.2 
mg=1

0 2 4 6 8 10
0

2

4

6

8

h
g

m
  

 /
 m

2
2

RU

Ia IIa IIb Tachyon

Figure 1: The solid red curves give the Higgs pole masses m2
h as a function of RU for m2

h0
= 5m2

g

and dU = 1.2 while the red-dashed curves give m2
h ± mhΓh. The dot-dashed blue line gives mhR,

the pole of the real part of the propagator. The horizontal dashed line gives mg and the vertical
dashed lines delimit the different zones as indicated by the labels.

with m̃2
h ≡ m2

h − imhΓh, where mh is the Higgs mass and Γh the (tree-level) Higgs width.

In order to explore the possible qualitative behaviours of the solutions to equation

(3.9) it is convenient to express all squared masses in terms of the mass gap m2
g and of

the dimensionless combination

RU ≡
v2

m2
g

(

µ2
U

m2
g

)2−dU

, (3.10)

which measures the strength of the Higgs-unparticle interaction. The pole equation takes

then the simple form

x̃ = x0 −
RU

x̃2
fU(x̃) , (3.11)

where

x̃ ≡
m̃2

h

m2
g

, x0 ≡
m2

h0

m2
g

, (3.12)

and

fU (x̃) = Γ(dU − 1)Γ(2 − dU )
[

(1 − x̃)dU + dU x̃ − 1
]

. (3.13)

6
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•  Let’s examine a particular case with x0=5 and the 
(complex) solutions of the pole equation for du=1.2 
mg=1
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Figure 1: The solid red curves give the Higgs pole masses m2
h as a function of RU for m2

h0
= 5m2

g

and dU = 1.2 while the red-dashed curves give m2
h ± mhΓh. The dot-dashed blue line gives mhR,

the pole of the real part of the propagator. The horizontal dashed line gives mg and the vertical
dashed lines delimit the different zones as indicated by the labels.

with m̃2
h ≡ m2

h − imhΓh, where mh is the Higgs mass and Γh the (tree-level) Higgs width.

In order to explore the possible qualitative behaviours of the solutions to equation

(3.9) it is convenient to express all squared masses in terms of the mass gap m2
g and of
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•  The effect occurs for every x0>1 for x0<1 
there is always an isolated pole
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Figure 3: Same as Fig. 1 for different values of x0 = m2
h0

/m2
g as indicated by the labels.

goes below the mass gap while the other gets heavier. Eventually, for sufficiently large

RU , the squared mass of the phantom pole gets negative and the state becomes tachyonic.

We also show the width of these poles by giving (dashed lines) the curves for m2
h ±mhΓh

(we come back to the discussion of this width in section 4, using the spectral function

technique). We see that the heavy pole gets wider and wider with increasing RU while

the lighter has always a small width. When the light Higgs gets below the mass gap its

width (at tree-level) is zero. For comparison, we also show in this figure the value of mhR

(dot-dashed line). We see that it approximates well mh when the Higgs width is small but

can be very different from it when the width gets larger.

Zone II is particularly striking: the initial SM Higgs pole, which was well above the

mass gap into the unparticle continuum, gets swallowed up by this continuum which spits

out a much lighter pole near (IIa) or below (IIb) the mass gap. A similar phenomenon

has been described in other fields of physics, see e.g. [12]. This behaviour is generic and

persists for other values of x0 = m2
h0

/m2
g and/or dU . Fig. 2 shows the different zones, with

the same coding as explained above, in the plane (x0, RU ) for dU = 1.2. In addition to the

zones discussed above, there is also the possibility of having a single pole below the mass

gap, corresponding to zone Ib in this plot. We do not give contour lines of x = m2
h/m2

g as

they would overlap in regions with two poles, making the figure clumsy. Between the lines

8



• We can try to capture better the structure of our 
propagator calculating the spectral function

• There are two pieces of the imaginary part of the 
propagator

• isolated poles: 

•

Spectral analysis

ρhh(s) = − 1
π

Im[−iPhh(s + iε)]

1
x + iε

→ P.V.
1
x
− iπδ(x)

(m2
g − p2)dU = (p2 −m2

g)
du(cos(duπ) + i sin(duπ)) p > mg



• There are two forms for the spectral function 
depending on whether there is an isolated pole:

•  The spectral function is normalized to 1 and can be 
interpreted as the projection of mass eigenstates 
(H,U) into the higgs interaction state (h)

ρhh(s) =
1

K2(m2
h)

δ(s−m2
h) + θ(s−m2

g)
TU (s)

D2(s) + π2T 2
U (s)

ρhh(s) = θ(s−m2
g)

TU (s)
D2(s) + π2T 2

U (s)

∫ ∞

0
ρhh(s)ds = 1

ρhh(s) ≡ 〈h|s〉〈s|h〉 = |〈H|h〉|2δ(s−m2
h) + θ(s−m2

g)|〈U,M |h〉|2
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These are two examples of
spectral functions for du=1.2

one with an isolate pole
the second with the higgs 

embedded in the continuum 
it is a broad resonance

Note the mass gap



•  Evolution of the pole for large RU and appearance 
of the phantom higgs
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Figure 5: Cuts of Fig. 4 along fixed RU values, as indicated.

state is an important quantity because it determines key properties of that state, like its

coupling to gauge bosons, that are crucial for its production and decay.

In Figs. 4 and 5 we show the spectral function for the case dU = 1.2, x0 = 5 and varying

RU . In Fig. 4 we give contour lines of ρhh(s) (we stop them at 0.2) in the plane (RU , s/m2
g).

We see two global peaks above the mass gap, one is at (RU = 0, s/m2
g = x0), corresponding

to the SM Higgs resonance, and the other at (RU ! 3.5, s/m2
g = 1) corresponding to the

phantom Higgs. For RU
>
∼ 3.5 this phantom Higgs drops below the mass gap giving rise

to a delta pole in the spectral function. We show by the solid red lines the Higgs poles

in this particular case (corresponding to Fig. 1). The green solid lines give the extrema

of the spectral function for fixed RU . We see that the pole lines offer reliable information

about the location of the maxima of the spectral function (we should not expect perfect

correspondence, see e.g. [13]) and their widths while the dashed curve corresponding

to mhR is only a good approximation near the global peaks and along the isolated pole

(where the tree-level Higgs width is small or zero). In any case, it is clear that the spectral

function carries more information concerning the structure of the Higgs propagator than

simply giving the location and width of its poles and it is therefore much more useful to

deal directly with it. To clarify even further the structure of the spectral function, Fig. 5

gives ρhh(s) at various fixed values of RU for the same parameters as before, dU = 1.2

and x0 = 5. For RU = 1 there is only one pole, it is above mg and corresponds to the
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• Projection onto the higgs interaction state 
of the isolated pole for different masses 
x=mh2/mg2 it can be very diluted!!!
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Figure 6: Pure Higgs composition of the isolated pole below mg as a function of RU for different
values of x = m2

h/m2
g and for dU = 1.2.

somewhat wide resonance of the spectral function (zone Ia). One can directly relate the

width of this resonance (as measured by the width across it at half the peak maximum)

with the width as given by the dashed lines in Fig. 1. For RU = 3, the pole above mg has

become wider and less pronounced while a sharper resonance has appeared right above

the mass gap (zone IIa). Notice that the continuum part of the spectral function does not

extend below the gap. This is in contrast with the behaviour of the complex pole near

mg shown in Fig. 1: from there, after taking into account the width, one would conclude

that the light resonance extends below mg. For RU = 6 this resonance has detached from

the continuum giving a delta function below mg. The pole above mg is very broad and

shallow (zone IIb) and could hardly be called a resonance.

From the previous figures one cannot obtain information on the prefactor 1/K2 which

weights the Dirac delta contribution to ρhh(s) when there is a pole below mg and gives

information of the pure Higgs composition of that pole, as explained above. This informa-

tion is given by Fig. 6 (valid for dU = 1.2), where the different lines correspond to different

values of x = m2
h/m2

g from x = 0 to x → 1−. When the influence of unparticles is small

(small RU ) 1/K2 → 1 as it should be for a Higgs with SM properties. The departure of

1/K2 from 1 is larger for larger RU (larger unparticle mixing) or when mh gets closer to

mg (smaller mass difference between the states that mix).

12



• In the example I have been discussing until now 
where the higgs mixes with an unparticle operator 
there are decays but can be explained by the 
normal decays of the higgs

• I would like to study the case where the unparticles 
do not mixed but can decay

• Let’s start with the following (toy)-lagrangian:

Decays? (preliminary)

L =
1
2
∂µφ∂µφ− 1

2
m2

0φ
2 − 1

2
κuφ2OU



• In order to avoid any problems with a 
tadpole for the unparticle operator, the 
following correlator will be supposed:

• On the other hand I will suppose that the 
field φ will have m>0

−iP (0)(s) =
1

D(0)
=

Ad

2 sin(πd)
1

(−s + m2
g − iε)2−d



•  There is a one loop contribution to the 2-
point function of the unparticles that can 
be resumed in the following way:

−iP (1) =
1

D(0) + Σ

Σ ! κ2
u

32π2
log

ΛU

m2
+ i

κ2
u

32π

√
1− 4m2

s
θ(s− 4m2)



• The consequences of that polarization are 
as follows:

- A new isolated pole appears with a mass 
less than mg

- If mg>m this poles gets an imaginary part 
proportional to the polarization

•  Therefore unparticles can decay!!!
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•  The higgs provides us with a portal to new un 
explored sectors

• If a minimal coupling with unparticles is included the 
vacuum structure is changed

• An IR regulator is needed to stabilize the unparticle 
vev

• A mass gap is generated for the unparticles, the 
higgs can appear as an isolated pole, be merged into 
the continuum or phantom (diluted) higgs can be 
obtained

• Unparticles can decay as resonances

(Un)Conclusions


