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MCFM overview
Monte Carlo for FeMtobarn processes. At LHC few of the cross
sections are expressed in fb, so MCFM. Parton level cross sections
predicted to NLO in αS.  Currently released version 5.2,  July 2007

Features-Less sensitivity to
unphysical µR and µF,
better normalization for rates,
fully differential distributions.
Shortcomings- low parton
multiplicity (no showering), no
hadronization, hard to model
detector effects.

http://mcfm.fnal.gov/

Work by John Campbell and Keith Ellis with appearances by guest celebrities, Fabio Maltoni, 
Francesco Tramontano,  Scott Willenbrock & Giulia Zanderighi.



Why NLO?

• Less sensitivity to unphysical input scales (eg.
renormalization and factorization scales).

• First real prediction of normalization of
observables occurs at NLO.

• It is a necessary prerequisite for other techniques,
matching with resummed calculations,
(MC@NLO, POWHEG, etc).

• More physics (a) parton merging to give structure
in jets, (b) initial state radiation, (c) More species
of incoming partons enter at NLO.



Improved scale dependence
• Variations of renormalization scale

are themselves NLO effects. So
without NLO calculation one has
no idea about the choice of
renormalization (or factorization)
scale.

• Example: Top cross section at the
Tevatron.

• Performing the calculation at NLO
reduces the dependence on
unphysical scales.

• µ  is the renormalization and
factorization scale.



W+n  jet rates from CDF

Both uncertainty on rates and deviation of Data/Theory from 1 are smaller than 
other calculations. “Berends” ratio agrees well for all calculations,
 but unfortunately only available for n≤2 from MCFM.



Ratio of data over theory (MCFM)
for first and second jet appears to
agree well. MCFM results are not
available at NLO for third jet.

CDF results for W+jets
PRD77 011108R



Z + n jets rate agrees well with NLO QCD from MCFM



Recent additions to MCFM

• WW+1jet (Campbell, RKE, Zanderighi, arXiv:0710.1832)

• H+2jet (Campbell, RKE, Zanderighi, hep-ph/0608194)

Unfortunately neither of these processes are yet included in the 
publically released code.



WW+1jet

Campbell et al, arXiv:0710.1832 [hep-ph]
Dittamaier et al, arXiv:0710.1577 [hep-ph]

Standard Cuts I :

Cuts II:

WW+1 jet and impact on
Higgs->WW + 1 jet search

Rates with cuts I+II



Higgs+2 jets at NLO

• Calculation performed using an effective
Lagrangian, valid in the large mt limit.

Campbell, Ellis, Zanderighi

Three basic processes at lowest order.



Higgs + 2 jet continued

• NLO corrections are
quite mild, increasing
LO cross section by
15%

• NLO cross section
contains a
considerable residual
scale uncertainty.



Higgs + 2 jets rapidity
distribution versus WBF

• Shape of NLO result,
similar to LO in
rapidity.

• WBF shape is quite
different at NLO.





Extension to higher leg processes
• MCFM does not include W/Z+3 jets,W/Z+4 jets at NLO.
• We know the tree graphs, we know the subtraction procedure, with

enough effort we can write an efficient phase space generator.
• The bottleneck is the calculation of multi-leg, one-loop diagrams.
• Straightforward numerical integration of one-loop diagrams is

complicated, by the presence of soft, collinear and UV divergences
• Analytic calculation may be too painstaking.
• Our preferred method is a semi-numerical approach . Scalar

integrals are calculated analytically and their coefficients
calculated numerically.



Components of a NLO
calculation

• Tree graphs (both for lowest order process and
real radiation)

• One-loop correction to the Born level process
• Subtraction terms to remove singularities from

real radiation graphs.
• Phase space generator.





The major outstanding problem is the calculation of one loop amplitudes



Berends-Giele recursion
(for Born+real)

Building blocks are non-gauge invariant color-ordered off-shell currents. Off-
shell currents with n legs are related to off-shell currents with fewer legs
(shown here for the pure gluon case).

Despite the fact that it is constructing the complete set of 
Feynman diagrams, BG recursion is a very economical scheme. 



Comparison of methods for tree
graphs

Duhr, Hoeche and Maltoni hep-ph/060705

Color dressed Berends-Giele approach avoids factorial growth.
The numerical calculation of tree graphs can be considered a
solved problem.



The calculation of one loop amplitudes
• The classical paradigm for

the calculation of one-loop
diagrams was established
in 1979.

• Complete calculation of
one-loop scalar integrals

• Reduction of tensors one-
loop integrals to scalars.

The ingredients are almost the same,  
but neither technique will be adequate for present-day purposes.



Techniques for one loop
diagrams

• QCDLoop project: allows one to evaluate
numerically an arbitrary one-loop scalar integral,
(Ellis, Zanderighi, arXiv:0712.1851)

• Unitarity techniques for one-loop amplitudes
Ossola, Papadopoulos, Pittau and

       Ellis, Giele, Kunszt arXiv:0708.2398,                     4-dimensional method
      Giele, Kunszt, Melnikov  arXiv:0801.2237,             d-dimensional method
      Giele and Zanderighi, arXiv:0805.2152,                   Application of d-dimensional method (gluons)
       Ellis, Giele, Kunszt, Melnikov, arXiv:0806.3467,   Application with massive fermions (t tbar gg..)
       Ellis,Giele,Kunszt,Melnikov,Zanderighi, arXiv:0810.2762  Amplitudes for W+3jets processes.



 Basis set of scalar integrals

In addition, in the context of NLO calculations, scalar higher point functions, can
always be expressed as sums of box integrals. Passarino, Veltman - Melrose (‘65)

Any one-loop amplitude can be written as a linear sum of  boxes,
triangles, bubbles and tadpoles

•Scalar hexagon can be written as a sum of six pentagons.
•For the purposes of NLO calculations, the scalar pentagon can be written as a sum of
five boxes.
•In addition to the ‘tH-V integrals we need integrals containing infrared and collinear
divergences.



Scalar one-loop integrals
• ‘t Hooft and Veltman’s integrals contain internal masses;

however in QCD many lines are (approximately) massless.
The consequent soft and collinear divergences are
regulated by dimensional regularization.

• So we need general expressions for boxes, triangles,
bubbles and tadpoles, including the cases with one or more
vanishing internal masses.



Y is the modified Cayley matrix

Scalar triangle integrals



Basis set of divergent integrals
By classsifying the integral in terms of the number of zero 
internal masses, and the number of distinct Cayley matrices
we can create a basis set of divergent integrals

The basis set of divergent
triangles contains 6 integrals



Similarly, the modified Cayley matrices for 16 divergent box integrals



The basis set of box integrals contains 16 integrals.



QCDLoop web page
giving access to hyper-linked
PDF web-pages which give
the  results for the basis
integrals, together with
references, special cases etc.

QCDLoop.fnal.gov

11 of the 16 divergent
box integrals were known
in the literature. The rest
are new.



Fortran code

Fortran code is available.
It calculates finite integrals
using the ff library, and
calculates divergent
integrals using the
QCDLoop library.



Numerical checks
We can perform a numerical check of the code, by using the 
relation between boxes, triangles and the six-dimensional box.

In D=6, the box integral is finite - no UV,IR or collinear divergences 
So we can check this relation numerically, (including in the physical
region by setting the causal ε equal to a very small number.





Scottish functions.
• We have expressed the one-

loop integrals entirely in
Scottish functions,
logarithms (Napier)  and
dilogarithms (Spence).

• Shown are John Napier,
1550-1617, laird of
Merchiston, inventor of the
Napierian logarithm and
William Spence of
Greenock (1777-1815)
author of “Essay on
logarithmic transcendents”



Algebraic reduction, subtraction
terms

• Ossola, Papadopoulos and Pittau showed that there is a systematic way
of calculating the subtraction terms at the integrand level.

• We can re-express the rational function in an expansion over 4,3,2, and
1 propagator terms.

• The residues of these pole terms contain the l-independent master
integral coefficients plus a finite number of spurious terms, which
vanish after integration.



Decomposing in terms of boxes,
triangles,…

• Without the integral sign, the
identification of the coefficients
is straightforward.

• Determine the coefficients of a
multipole rational function.



van Neerven-Vermaseren basis
Example: solve for the box coefficients by setting

We find two complex solutions

p is external momentum,
q is the denominator
offset momentum



Box residues 2, triangle residues 7, bubble  residues 9  structures:

 18 l-independent parameters, vanishing (spurious) integrals

Systematic algebraic reduction at the
integrand level



  Parameterization of the loop momentum

The loop momenta can be decomposed in terms of  a set of basis
vectors, determined by the external vectors in the problem.

 we use:                            dual momenta vi     pivj
=δ

ij

 and orthogonal                  unit vectors ni

Decomposition of the loop momentum



Bubble, infinite # of solutions (on a “sphere”)

Contributions with four cut propagators di=dj=dk=dl=0 two solutions

Triangle, infinite # of solutions (on a circle)

Complex valued loop momenta

Solving the unitarity conditions



The coefficients are obtained by solving algebraic equations

The residue is taken at special loop momentum defined by the unitarity conditions.

di=dj=dk=dl=0

di=dj=dk=0

di=dj=0

two solutions

infinite solutions

The residue of the amplitudes factorize to the product  of tree amplitudes



=

The residues of the poles  = sum over factorized tree amplitudes

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

The box residue



Numerical Implementation

Check the singular parts:

Compare  CPU time with those of the traditional method in case
of  6g, 5g ,… amplitudes

EGZ: 9s per ordered amplitude on 2.8GHz Pentium processor
EGK: 0.01s per ordered  amplitude  on 2.8GHz Pentium processor

                    ev.time                    # of cuts

           4 gluon:  0.0009s                     6
           5 gluon:  0.0035s                    20
           6 gluon : 0.0107s                    44

    Computer time: scales with _  n^4 (# of cuts)  not as n!



Result for six gluon amplitude
• Results shown here for the cut-

constructible part
• The relative error for the finite

part of the 6-gluon amplitude
compared to the analytic result,
for the (+ + - - - -) helicity
choice. The horizontal axis is
the log of the relative error, the
vertical axis is the number of
events in arbitrary linear units.

• For most events the error is less
than 10-6, although there is a tail
extending to higher error.

Ellis, Giele, Kunszt



Numerical Unitarity Method  in D-dimension  for
gluon amplitudes

                                           Two sources of D-dependence

 i) spin-polarization                             ii) loop momentum component  live in  D.
     states  live in Ds  .                               (Ds>D)

Giele, Kunszt,Melnikov, arXiv 0801.2237



Two key features

 Choose two integer values  Ds  = D1  and Ds = D2 to reconstruct the full Ds
dependence.

 Suitable for numerical implementation.
  Ds=4-2ε  ‘t Hooft Veltman scheme, Ds=4   FDHS

 maximum 5 constraints: we need to consider also  pentagon cuts.

N(l) = N(l4 , µ2)      µ2 = -l52 - … - lD2

Dependence on  Ds   is linear

The loop momentum effectively has only 4+1 component



Reduction  in  D-dimensions
The parametrization of the N-particle amplitude

Parametrization of the residues

Pentuple residue:

e(D s)
i j kmn(l) = e(D s;(0))

i j kmn

Box residue:

Three extra structures for triple,  three
for double  and zero for single cuts,

only even powers of



Four new master integrals

Four of the se
2 dependent master integrals are not spurious (ie

they give a contribution)

+ similar terms for triangle, bubble and tadpole contributions.

As ε -> 0  the new master integrals can be decomposed in the
old basis and  generate ε dependent bubble coefficients !

….

We obtain the full D-dependence of the amplitude



One-loop amplitudes up to terms of order ε

One loop amplitudes as sum of cut-constructible and rational parts:

The cut constructible part is as before (EGK):

The rational  part is new  (GKM):



Results for full amplitude
• Keep dimensions of virtual unobserved particles integer and

perform calculations in more than one dimension.
• Arrive at non-integer values D=4-2ε by linear interpolation.
• Results for six-gluon amplitudes agree with original Feynman

diagram calculation of RKE, Giele, Zanderighi.

Giele, Kunszt,Melnikov, arXiv 0801.2237



Scaling property of tree and loop
amplitudes

Giele and Zanderighi arXiv:0805.2152

Results for one-loop
20 gluon amplitude!



W+3 jet production

We need to calculate two amplitudes 

New !   Ellis,Giele,Kunszt,Melnikov,Zanderighi, ArXiv:0810.2762

Process 1)  1203 + 104 Feynman diagrams
Process 2)  258 + 18     Feynman diagrams



Tree amplitude for qbar q g g ….g W can be written as

Color decomposition for W+multi-gluon amplitude

At one loop the amplitude is decomposed into primitive amplitudes

Full information about the (gauge invariant) primitives specifies 1-loop
amplitude. Only one highest level N-point function per primitive.



Primitive amplitudes
Bern, Dixon, Kosower (1994)

 Special role: the flavor of the cut lines are uniquely defined

AL(1πt; 2t; 3; 4)
AL(1πt; 3; 2t; 4)AL(1πt; 3; 4; 2t)

 Three distinct quadruple cuts  three gauge invariant primitive amplitudes



qbar q Qbar Q g W  amplitude
Color decomposition at tree graph level

Similar at one-loop level



Numerical results for primitive
amplitudes

Results for all primitives in our paper,



Timing and accuracy

45-50 ms for most leading color, 160 for most subleading, 2.33GHz
Pentium processor



Rocket science!

But it still must be tested in battle conditions, ie a real physical process

Eruca sativa =Rocket=roquette=arugula=rucola
Recursive unitarity calculation of one-loop amplitudes



Summary
• MCFM appears to describe untagged W/Z+1 jet and W/Z+2 jet data

well.
• Even at the Tevatron the known results on multi-leg processes are

inadequate.
• Calculation of one-loop scalar integrals is now complete: QCDLoop
• There is much theoretical effort on the calculation of one-loop multi-leg

diagrams.
• D-dimensional unitarity techniques can calculate full one-loop

amplitudes (ie both cut-constructible and rational parts).
• But so far, practical calculations have used either a) analytic results, b)

PV reduction, or c) Giele-Glover style reduction.
• Semi-numerical d-dimensional unitarity-based methods have obtained

results not attainable with other methods (eg 20 gluon amplitudes)
• Full results one-loop available for W+5 partons (and more)
• As yet the unitarity methods have been little tested in full calculations.



Numerical evaluation of the primitive amplitudes
for ttgg and ttggg

AL(1πt; 2t; g1; g2; g3) AL(1πt; g1; 2t; g2; g3) AL(1πt; g1; g2; 2t; g3) AL(1πt; g1; g2; g3; 2t)AL(1πt; 2t; g1; g2) AL(1πt; g1; 2t; g2) AL(1πt; g1; g2; 2t)

 i)  Born primitive amplitudes are calculated using BG recursion

πtt + πtt + 2; 3

tadpole cuts: six-, seven-leg tree amplitudes

 ii)  we have to calculate renormalized one loop primitive amplitudes

Z2, Zm factors +  mass counter term diagrams (restores gauge invariance)

iv)  Master integral input from QCDloop

INPUT

iii)  test:  correct soft collinear limits,  + traditional calculation



Numerical D-dimensional unitarity algorithm
for  massive fermions

               Application to ggtt and gggtt

• We have to choose even values
for Ds

• Pentagon, box, triangle ,bubble and tadpole cuts

• The treatment of bubble and tadpole cuts is more subtle:
       difficulty with self-energy insertions on external lines.

• Particles of different flavors: more sophisticated bookkeeping

• Master integrals from with masses from QCDLoop  (Ellis,Zanderighi)



Self-energy on external massive fermion leg

R es
h
A[1](t; g1; : : : ; gn;πt)i

»
X

states
A[0](t; g§;πt§) £ A[0](t§; g§; g1; : : : ; gn;πt)

The external self-energy is
doubly counted
Tree amplitude on the right hand
side is not well defined.

A[0](t§; g§; g1; : : : ; gn;πt) = R (t§; g§; g1; : : : ; gn;πt)
(pt§+ pg§)2 ¡ m2

t
+ B (t§; g§; g1; : : : ; gn;πt):



D sX

s= 1
eπseºs = ¡ gπº :

  
   Follow the same path: 
    i) Discard the term in the tree amplitude generating one particle reducible diagrams
       BG recursion relations can accommodate it by truncating the recursive steps
    ii) It is taken into account  by adding later  wave function renormalization
        The remaining part of the amplitude (B) is not gauge invariant.    
     iii) The gauges used to calculate Z2 and B must be the same, (eg Feynman gauge)

It mildly violates “unitarity ”: sum over non-physical states

In a Feynman diagram calculation:
    i) one particle reducible self-energy corrections on external legs are
discarded
    ii) Their effects are included by renormalization constants (Z2 ,Zm )

Self energy contribution in unitarity algorithm



πtt + 3

         Results for the tree and loop primitive amplitudes

Computer time from ggtt  to gggtt scales the same way as in case of gluons

Fortran77 code


