A New Two Higgs Doublet Model

S. Nandi
Oklahoma State University
Oklahoma Center for High Energy Physics

(In collaboration with S. Gabriel, B. Mukhopadhyaya and S. K. Rai)

S. Gabriel, B. Mukhopadhyaya, S. Nandi and S. K. Rai,
OUTLINE

1. Introduction
 : overview of Higgs models

2. Our new model

3. Phenomenological Implications
 : Lepton Colliders
 : Hadron colliders

4. Cosmological implications

5. Conclusions
INTRODUCTION : Higgs Overview

- Responsible for breaking of electroweak gauge symmetry
- Gives mass to SM particles
- Mass bound: $m_h > 114.4$ GeV (LEP)
- Dominant decay modes, depending on m_h:

\[H \rightarrow b\bar{b}, \; WW, \; ZZ, \; tt \]

- Experimentally, nothing currently known about Higgs sector
ATLAS TDR for Higgs Search at LHC
Two Higgs Doublet Model

- Both doublets couple to all the fermions \rightarrow serious FCNC problems
- One doublet couples to up-type fermions, the other to down-type fermions (Motivated by SUSY)
- Only one doublet couples to fermions, but both have VEV
- Only one doublet couples to fermions, and only that doublet has VEV, Other doublet is innert. Motivation: Heavy Higgs, Higgs dark matter (Barbieri, Hall, and Rychkov)
Our new Model

• What’s new?
• One doublet gives mass to all SM fermions except neutrinos
• Other doublet gives mass only to neutrinos
• Gives an alternative explanation of small neutrino masses
Model

- Symmetry $SU(3) \times SU(2) \times U(1) \times Z_2$
- Right-handed neutrinos N_R and two Higgs doublets χ, ϕ
- SM fermions, χ even under Z_2
- N_R, ϕ odd under Z_2
- $V_\phi \sim 10^{-2}$ eV, and $V_\chi \sim 250$ GeV \rightarrow large fine tuning $V_\phi/V_\chi \sim 10^{-13}$ similar to m_h/M_{PL} in SM
- Lepton Yukawa interactions:

$$y_l \overline{\psi}_L l_R \chi + y_{\nu_l} \overline{\psi}_L N_R \tilde{\phi} + h.c., \quad \overline{\psi}_L = (\nu_l, \bar{l})_L$$

- \rightarrow Neutrinos get tiny mass from breaking of Z_2 symmetry
- Neutrinos are Dirac particles \rightarrow No neutrino-less double beta decay
Model

Higgs Potential:

\[V = -\mu_1^2 \chi^\dagger \chi - \mu_2^2 \phi^\dagger \phi + \lambda_1 (\chi^\dagger \chi)^2 + \lambda_2 (\phi^\dagger \phi)^2 + \]
\[+ \lambda_3 (\chi^\dagger \chi)(\phi^\dagger \phi) - \lambda_4 |\chi^\dagger \phi|^2 - \frac{1}{2} \lambda_5 \left[(\chi^\dagger \phi)^2 + (\phi^\dagger \chi)^2 \right] \]

Physical Higgs Particles

- Charged Higgs H^\pm
- Neutral pseudoscalar ρ
- Two neutral scalars h, σ
Model

In Unitary Gauge:

\[\chi = \frac{1}{\sqrt{2}} \left(\sqrt{2} \frac{V}{V} H^+ \right) \]

\[h_0 + i \frac{V}{V} \rho + V \chi \]

\[\phi = \frac{1}{\sqrt{2}} \left(-\sqrt{2} \frac{V}{V} H^+ \right) \]

\[\sigma_0 - i \frac{V}{V} \rho + V \phi \]

\[V^2 = V_\chi^2 + V_\phi^2 \]
Model

\[m_H^2 = \frac{1}{2} (\lambda_4 + \lambda_5) V^2, \quad m_\rho^2 = \lambda_5 V^2 \]

\[m_{h,\sigma}^2 = \left(\lambda_1 V_\chi^2 + \lambda_2 V_\phi^2 \right) \pm \sqrt{\left(\lambda_1 V_\chi^2 - \lambda_2 V_\phi^2 \right)^2 + \left(\lambda_3 - \lambda_4 - \lambda_5 \right) V_\chi^2 V_\phi^2} \]

or, more simply:

\[m_\sigma^2 = 2 \lambda_2 V_\phi^2 + O(V_\phi^2 / V_\chi^2) \quad \text{Very light scalar} \]

\[m_h^2 = 2 \lambda_1 V_\chi^2 + O(V_\phi^2 / V_\chi^2) \]
Model

Mass Eigenstates of h, σ:

$$h_0 = c h + s \sigma, \quad \sigma_0 = -s h + c \sigma$$

where,

$$c = 1 + O(V_\phi^2 / V_\chi^2), \quad s = -\frac{\lambda_3 - \lambda_4 - \lambda_5}{2\lambda_1}(V_\phi / V_\chi) + O(V_\phi^2 / V_\chi^2)$$

This leads to very small mixing

Note: h behaves essentially like the SM Higgs in interactions with fermions and gauge bosons
Phenomenological Implications

Light Scalar σ:
Possible decay modes:

$$\sigma \rightarrow \bar{\nu}\nu, \quad if \quad m_\sigma > 2m_\nu$$

$$\sigma \rightarrow \gamma\gamma \quad (one \ loop)$$

$$\Gamma \sim \frac{e^8}{4} \frac{m_\sigma^5}{m_q^4} \Rightarrow \tau \sim 10^{20} \text{ yrs}$$

$\rightarrow \sigma$ only observable at colliders as missing energy

Couplings of σ to quarks and charged leptons are highly suppressed
Phenomenological Implications

$ZZ\sigma$ coupling is proportional to V_Φ, so

$$e^+e^- \rightarrow Z^* \rightarrow Z\sigma, \text{ and } Z \rightarrow Z^*\sigma \rightarrow f\bar{f}\sigma$$

are suppressed by a factor of $(V_\Phi/m_Z)^2$

However, $ZZ\sigma\sigma$ coupling is unsuppressed:

$$Z \rightarrow Z^*\sigma\sigma \rightarrow f\bar{f}\sigma\sigma$$

$$\sum_f \Gamma(Z \rightarrow f\bar{f}\sigma\sigma) = 2.5 \times 10^{-7} \text{ GeV}$$

Total Z width $= 2.4952 \pm 0.0023$ GeV (PDG)

At LEP1, $\approx 1.7 \times 10^7$ Z’s $\rightarrow \approx 2$ such events
Phenomenological Implications

Coupling of \(\sigma \) to neutrinos is relatively large, so

\[
Z \rightarrow \nu \bar{\nu} \sigma
\]

can be significant

\[
\Gamma(Z \rightarrow \nu \bar{\nu} \sigma) \simeq (0.64 \text{ MeV}) \left(\sum y_{\nu}^2 \right)
\]

For \(\sum y_{\nu}^2 \sim 1 \), this is \(<1.5 \text{ MeV}\)

Invisible Z width = \(499 \pm 1.5 \text{ MeV} \) (PDG)
Phenomenological Implications

Pseudoscalar ρ:
Assume ρ has no strong coupling, so
\[
\frac{\lambda_5^2}{4\pi} \leq 1 \quad \Rightarrow \quad m_\rho \leq 470 \text{ GeV}
\]

$Z \rightarrow \rho \sigma, \quad Z \rightarrow \rho^* \sigma \rightarrow \nu\bar{\nu}\sigma$

Note: Couplings of ρ to quarks and charged leptons are VEV suppressed

If $m_\rho < m_Z$, then $\rho \rightarrow \nu\nu$ will be the dominant decay mode, and $Z \rightarrow \rho \sigma$ will be invisible

Invisible Z width = 499 ± 1.5 MeV (PDG)
Further Implications

\[\Gamma(Z \rightarrow \rho \sigma) = \frac{G_F m_Z}{24\sqrt{2}\pi} \left(1 - \frac{m^2}{m_Z^2}\right)^3 < 1.5 \text{ MeV} \Rightarrow m_\rho > 78 \text{ GeV} \]

For \(m_\rho > m_Z \), we have

\[e^+ e^- \rightarrow Z^* \rightarrow \rho \sigma \]

\[\sigma = \frac{G_F m_Z^4 (g_V^2 + g_A^2) s}{24\pi} \left(\frac{1}{s-m_Z^2}\right)^2 \left(1-\frac{m_\rho^2}{s}\right)^3 \]

At LEP2, with \(\sqrt{s} \sim 200 \text{ GeV} \) and \(\sim 3000 \text{ pb}^{-1} \) of data, < 1 event is expected for \(m_\rho > 95 \text{ GeV} \)
Heavy Scalar h

Essentially SM Higgs

Invisible decay mode $h \rightarrow \sigma \sigma$:

$$\Gamma(h \rightarrow \sigma \sigma) = \frac{\left(\lambda_3 + \lambda_4 + \lambda_5\right)^2 V^2}{32 \pi m_h}$$

$$m_h^2 = 2 \lambda_1 V^2 + O\left(V^2_{\phi} / V^2_{\chi}\right)$$

$$\Gamma(h \rightarrow \sigma \sigma) = \frac{\left(\lambda_3 + \lambda_4 + \lambda_5\right)^2 m_h}{64 \pi \lambda_1} \equiv \frac{\lambda^* m_h}{64 \pi}$$
Invisible Higgs Decay

\[\lambda^* = 0.1 \]
For a wide range of λ^*, the invisible mode is dominant for $m_h < 160$ GeV

Current limit for invisible Higgs: $m_h > 112.3$ GeV (L3)
Invisible Higgs Signal at LHC

At LHC, invisibly decaying Higgs is observable through WBF:

\[qq \rightarrow qqWW \rightarrow qqh, \quad qq \rightarrow qqZZ \rightarrow qqh \]

Signal: Two q’s with high p_T + invisible

This signal can be observed at 95% C.L. with $>10 \text{ fb}^{-1}$ of data if $B(h \rightarrow \text{invisible}) > 30\%$ and $m_h < 400$ GeV (Eboli and Zeppenfeld)

Difficult to identify invisible particle as Higgs
Implications for Charged Higgs

\[
\chi = \frac{1}{\sqrt{2}} \left(\sqrt{2} \frac{V_{\phi}}{V} H^+ \right), \quad \phi = \frac{1}{\sqrt{2}} \left(-\sqrt{2} \frac{V_{\chi}}{V} H^+ \right)
\]

\[
V^2 = V_{\chi}^2 + V_{\phi}^2, \quad V_{\chi} \sim V, \quad V_{\phi} \sim 10^{-2} \text{ eV}
\]

Charged Higgs essentially resides in φ

Its coupling with quarks is highly suppressed
(Chromophobic charged Higgs)

Coupling with neutrinos and charged leptons \textit{not} suppressed
Implications for Charged Higgs

\[L_Y = -\sqrt{2} \left(\frac{m_\nu}{V_\chi} \right) r_\chi \left[\overline{\ell}_L \nu_R H^- + \overline{\nu}_L \ell_R H^+ + h.c. \right] \]

\[+ \sqrt{2} r_\phi \left[\left(\frac{m_d}{V_\chi} \right) \overline{u}_L d_R H^+ - \left(\frac{m_u}{V_\chi} \right) \overline{d}_L u_R H^- + h.c. \right] \]

where, \(r_\chi = V_\chi / V \), and \(r_\phi = V_\phi / V \)

\(\Rightarrow \) coupling with neutrinos \(\propto \) neutrino masses

\(HW\sigma, HW\rho : \) usual gauge interaction
Main Decay Modes of H^\pm

$H^\pm \rightarrow \sigma W^\pm$

$H^\pm \rightarrow \rho W^\pm$

$H^\pm \rightarrow \ell \nu_\ell$, ($\ell = e, \mu, \tau$)

leptonic coupling $\propto \frac{m_{\nu_\ell}}{V_\phi}$

Thus the leptonic decay mode will be determined by the neutrino mass hierarchy
Neutrino Mass Hierarchy

\[\nu_\tau \quad \nu_\mu \quad \nu_e \]

Normal Hierarchy

\[H^\pm \rightarrow \nu_\tau \tau \]

Inverted Hierarchy

\[H^\pm \rightarrow \ell \nu_\ell, \quad (\ell = e, \mu) \]
Collider Signals of H^\pm

- Usual production of charged Higgs via:

 $$bg \rightarrow tH^-, \text{ or } \bar{b}g \rightarrow \bar{t}H^+$$

 is not available

- In our model via Drell-Yan:

 $$pp \text{ (or } p\bar{p} \text{)} \gamma,Z \rightarrow H^+H^-$$
Branching Ratios of H^\pm (inverted hierarchy)

Parameters: $\lambda_1 = 0.12, \lambda_2 = 1.0, \lambda_3 = 2.0$,

$$\lambda_5 = \frac{m^2_\rho}{V^2}, \quad \lambda_4 = \frac{2m^2_{H^\pm}}{V^2} - \lambda_5$$

6/19/2008

S.Nandi, talk at Fermilab
Model

Higgs Potential:

\[V = -\mu_1^2 \chi^\dagger \chi - \mu_2^2 \phi^\dagger \phi + \lambda_1 (\chi^\dagger \chi)^2 + \lambda_2 (\phi^\dagger \phi)^2 + \lambda_3 (\chi^\dagger \chi)(\phi^\dagger \phi) - \lambda_4 |\chi^\dagger \phi|^2 - \frac{1}{2} \lambda_5 \left[(\chi^\dagger \phi)^2 + (\phi^\dagger \chi)^2 \right] \]

Physical Higgs Particles:

Charged Higgs \(H^\pm \)
Neutral pseudoscalar \(\rho \)
Two neutral scalars \(h, \sigma \)
Collider Signals of H^\pm

- **Signal:**
 \[pp \rightarrow H^+H^- \rightarrow \ell^+\ell^- + \text{missing } E_T \]

- **Background:**
 \[pp \rightarrow W^+W^- \rightarrow \ell^+\ell^- + \text{missing } E_T \]
 \[pp \rightarrow Z^0Z^0 \rightarrow \ell^+\ell^- + \text{missing } E_T \]
 \[\ell = e, \mu \]

- H^\pm has a large BR to e or μ compared to W^\pm

- Missing E_T reduces the background since $m_{H^\pm} > m_W$

LHC: $\sqrt{s} = 14$ TeV

6/19/2008 S.Nandi, talk at Fermilab
at LHC with $L = 30 \, fb^{-1}$, with cuts:

\[p_T^\ell > 25 \text{ GeV}, \quad |\eta_\ell| < 2.5, \quad \Delta R_{\ell\ell} \geq 0.4 \]

\[M_{\ell\ell}^{\text{inv}} > 100 \text{ GeV}, \text{ missing } E_T > 100 \text{ GeV} \]
at LHC with $L = 30 \, fb^{-1}$, with cuts:

\begin{align*}
 p_T^\ell &> 25 \, GeV, \quad |\eta_\ell| < 2.5, \quad \Delta R_{\ell \ell} \geq 0.4 \\
 M_{\ell \ell}^{inv} &> 100 \, GeV, \quad \text{missing } E_T > 100 \, GeV
\end{align*}

6/19/2008

S.Nandi, talk at Fermilab
Reach for H^\pm at LHC

- For 5σ significance:

- With $L=10 \text{ fb}^{-1}$ we can discover H^\pm with a mass up to 200 GeV

- With $L=100 \text{ fb}^{-1}$ we can discover H^\pm with a mass up to 250 GeV
Case for Normal Hierarchy

\[pp \rightarrow H^+H^- \rightarrow \tau^+\tau^- + \text{missing } E_T \]

- Signal is same as e,\(\mu \) case
- Background is reduced by factor of 4
- However, tau’s must decay which reduces the effective signal
Cosmological Implications

• **Neutrino star formation**
 The interaction of the almost massless scalar, sigma, with the neutrinos are strong
 → neutrino star formation

• **Effect on supernova explosion**
 Strong interaction with sigma will affect the neutrino emission during supernova explosion
 → will affect SN explosion dynamics

• **Effect on big bang nucleosynthesis**
Big Bang Nucleosynthesis

- Predicted light element abundances depend on the number g^* of light spin degrees of freedom in thermal equilibrium at $T \sim 1$ MeV

$$g^* = g_b + \frac{7}{8} g_f$$

- In the standard scenario (SBBN), this includes γ, e^\pm, ν's:

$$\left(g^*_S\right)_{SBBN} = 2 + \frac{7}{8} (4) + \frac{7}{8} (6) = 10.75$$

- In our model, relatively strong interactions between left- and right-handed neutrinos and the light scalar σ will keep them in thermal equilibrium

$$g^* = \left(g^*_S\right)_{SBBN} + 1 + \frac{7}{8} (6) = 17$$
Big Bang Nucleosynthesis

• Reactions that interconvert protons and neutrons:

\[n \leftrightarrow p + e^- + \bar{\nu}, \quad \nu + n \leftrightarrow p + e^- , \quad e^+ + n \leftrightarrow p + \bar{\nu} \]

• For \(T \gg \Delta m = m_n - m_p = 1.293 \text{ MeV}, \) \(\Gamma_{p \leftrightarrow n} \gg H, \) and these reactions are in thermal equilibrium

\[\Rightarrow \frac{n}{p} = e^{-\frac{\Delta m}{T}} \frac{\mu_e - \mu_{\nu}}{T} \]

• We know \(\mu_e/T \sim 10^{-10} \). Assume also that \(\mu_{\nu}/T \approx 0 \)

\[\Rightarrow \frac{n}{p} = e^{-\frac{\Delta m}{T}} \]
Big Bang Nucleosynthesis

• The reactions that interconvert protons and neutrons freeze out when $\Gamma_{p\leftrightarrow n} \sim H$.

$$H = 1.66 \sqrt{g_*} \frac{T^2}{M_{PL}}$$

$$\Gamma_{p\rightarrow n} = \frac{1}{1.636 \tau_n} \int_{\Delta m/m_e}^{\infty} d\varepsilon \frac{\varepsilon(\varepsilon - \Delta m/m_e)^2 \sqrt{\varepsilon^2 - 1}}{[1 + \exp(\varepsilon \Delta m/T)][1 + \exp((\Delta m - \varepsilon m_e)/T)]}$$

• In SBBN (with $g_* \approx 10.75$), this gives $T_F \approx 0.8$ MeV

$$\Rightarrow \frac{n}{p} = e^{-\frac{\Delta m}{T_F}} \approx \frac{1}{6}$$
Big Bang Nucleosynthesis

• By the time nucleosynthesis begins at $T \approx 0.3$ MeV, neutron decays have reduced n/p to $\approx 1/7$.
• \rightarrow To a good approximation, all neutrons end up in He-4.
The mass fraction of He-4 is

$$Y_P = \frac{4n_{He}}{n_N} \approx \frac{4(n_n/2)}{n_p + n_n} = \frac{2(n/p)}{1 + (n/p)} = 0.25$$

• Observed value: $Y_P = 0.249 \pm 0.009$ (PDG)
Big Bang Nucleosynthesis

• Larger g_* implies larger T_F

• For low temperature, $\Gamma_{p\leftrightarrow n} \sim T^5$

\[
\Rightarrow \frac{\Gamma_{p\leftrightarrow n}}{H} \sim \frac{T^3}{\sqrt{g_*}} \Rightarrow T_F \sim g_*^{1/6}
\]

• For $g_* = 17$, $T_F \approx 0.86 \text{ MeV}$

\[
\Rightarrow \frac{n}{p} = e^{\Delta m \left(\frac{1}{0.8 \text{ MeV}} - \frac{1}{0.86 \text{ MeV}}\right)} \left(\frac{n}{p}\right)_{SBBN} \approx 1.2 \left(\frac{n}{p}\right)_{SBBN}
\]

\[
\Rightarrow Y_p \approx 0.30
\]
Possible Solution: Large Neutrino Density

• Since relic neutrinos haven’t been detected, μ_ν is unknown

$$\frac{n}{p} = e^{-\frac{\mu_\nu}{T}} \left(\frac{n}{p} \right)_{\mu_\nu = 0}$$

$\mu_\nu \approx 0.15 \text{ MeV} \implies e^{\frac{\mu_\nu}{T}} \approx \frac{1}{1.2}$

• g_* is consistent with BBN for $\mu_\nu \approx 0.15 \text{ MeV}$
Another Possible Solution: Late Decaying Particles

• The energetic decay products of a massive particle ($m > \text{a few GeV}$) that decays during or after nucleosynthesis can cause nuclear reactions among background nuclei, altering light element abundances

• Non-BBN Bounds on Number of Neutrinos:

 • WMAP: $0.8 < N_\nu < 7.6$ (Ichikawa, Kawasaki, Takahashi, Nov. 2006)
 • Seljak, Sloshar, McDonald (WMAP + several other astrophysical data sources) claim that more than 3 neutrinos is required (Sep. 2006)
Conclusions

• Proposed new two Higgs doublet model based on $\text{SM} \times Z_2$

• Z_2 broken at $\sim 10^{-2} \text{ eV}$

• Gives new mechanism for tiny neutrino mass

• Neutrinos are Dirac particles, → no neutrinoless double beta decay

• Higgs: H^\pm, h, ρ → mass at EW scale, σ → extremely light

• h like SM, but possibly dominant invisible decay mode $h \rightarrow \sigma \sigma$

• Alters Higgs signals at LHC, but observable through WBF

• Unusual signal for H^\pm: e and μ in the final state at the LHC.

• Cosmological implications: neutrino star, supernova and BBN
Branching Ratio

$\sigma \ W^+$

$\rho \ W^+$

$V_\phi = 1 \text{ eV}$

$m_{\nu_{\tau}} = 0.01 \text{ eV}$

$M_{H^+} \ (\text{GeV})$

Branching Ratio

$V_\phi = 0.01 \text{ eV}$

$m_{\nu_{\tau}} = 0.01 \text{ eV}$

$M_{H^+} \ (\text{GeV})$
$\tau^+ + \tau^-$

$M = 100$ GeV

$M = 200$ GeV

$M = 300$ GeV

H^+

Number of events/bin

$\Delta R_{\tau^+ \tau^-}$

$M_{H^+} = 100$ GeV

$M_{H^+} = 200$ GeV

$M_{H^+} = 300$ GeV

SM

Number of events/bin

$M_{\tau^+ \tau^-}$(GeV)