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Motivation

Dark matter makes up ∼ 20% of our universe.

Not much known of nature of DM (number of
species, masses, interactions, coupling to SM....)

Recent possible DM observations point to
“nontraditional” interactions (large annihilation
cross-sections, leptophilic couplings).

Should consider all experimentally observable
DM-SM interactions.

Desirable to do model-independent study of
possible DM-SM interactions.
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Motivation

Recent interest in “hidden” models:

low-mass particles connected to SM only via

high-energy interactions. Could still discover

new low-mass particles!

−→ Light DM?

Should consider DM masses below weak
scale. (Eventually, . 100 MeV.)
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Relevant Features of Dark Matter

We know a few things about DM (relevant for this talk):

DM must have long lifetime (τ ∼ age of the
universe).

DM is dark: Must rarely annihilate or decay to easily
observable SM particles (γ’s, e+e−).

In our neighborhood, density of DM is
∼ .3 GeV/cm3.

DM is nonrelativistic (v ∼ 230 km/sec).
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Dark Matter Direct Searches

Usual DM direct search:

O(10 GeV − 10 TeV) DM bounces elastically off
O(10 − 100 GeV) nucleus.

DM nonrelativistic, v ∼ 10−3c.

Example:
100 GeV DM particle scattering off 100 GeV nucleus:
nucleus receives momentum kick p ∼ 100 MeV.

However, could get similar momenta in final state
products via other scenarios.

Possible to use existing detectors to find/rule out other
interactions?
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Dark Matter Direct Searches

Instead, could consider inelastic scattering
fN → FN ′ (f = DM, N,N ′ = nuclei, nucleons,
F = BSM, ν, e...).

Take mF << mf .

If mf ∼ 100 MeV, final state similar to that of usual
DM detection case.

Can use existing detectors to consider 1 − 100 MeV
mass range, but with inelastic scattering?

Can consider case where F is invisible (not done
here) or visible. We take case F = e.

−→ NEUTRINO DETECTORS!
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Neutrino Experiments

Consider processes with f̄u → de+, fd → ue−.

Solar & reactor experiments probe O(1 − 100 MeV)
range in Eν for various nuclei.

Will specifically look at Super-K:

Usual interaction: ν̄ep → ne+ Ee ' Eν .

Replace ν with nonrelativistic f : f̄p → ne+ Ee ' mf .

→ f looks like neutrinos but monoenergetic signal.
→ must translate limits on ν̄e to limits on f̄ .

Will only consider f̄p → ne+ here.
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Flux in Neutrino Experiments
DM Flux in ν experiments (if f comprises all DM):

ΦDM .
.3 GeV/cm3

mf
× 230 km/s

mf = 100 MeV: Φ . 7 × 107/(cm2s)

=⇒ mf = 10 MeV: Φ . 7 × 108/(cm2s)

mf = 1 MeV: Φ . 7 × 109/(cm2s)

Compare to flux limit from Super-K relic SN ν̄e search:

Φν̄e
< 1.2/cm2s for 19.3 MeV < Eν . 80 MeV.

σ ∼ 1/Λ4 → Should be able to probe New Physics scale
> 2 orders of magnitude beyond weak scale!
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Assumptions and Simplifications
Want model-independence: effective operator analysis.

Here, we consider DM which

is fermionic and

is a singlet under SM gauge group

So, we look for operators which

are dimension-6 (or less)

are SU(3) × SU(2) × U(1)-invariant

can give the process f̄u → de+ and

aren’t suppressed by ν mass.

Will find f is of the mass relevant to ν experiments.
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Operator Basis
This leaves 6 operators (all 6-D, suppressed by Λ2):

OW = gL̄τaφ̃σµνfW a
µν

OṼ = ¯̀
Rγµfφ†Dµφ̃

OT = εijL̄
iσµνfQ̄jσµνdR

OSd = εijL̄
ifQ̄jdR

OSu = L̄f ūRQ

OV R = ¯̀
RγµfūRγµdR

L,Q: SU(2) doublets.
`R, uR, dR: right-handed SU(2) singlets.
φ̃ = iτ2φ∗.
In all cases, f right-handed.
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Limits from DM Lifetime and γ’s
OW = gL̄τaφ̃σµνfW a

µν :

Mag. mom. op: f → νγ at tree level (v = Higgs vev):

CW

Λ2
OW : Γ(f → νγ) =

|CW |2

Λ4

αv2

2
m3

f

Insist that f have lifetime ∼ age of universe, ∼ 4 × 1017 s.
→ Γ . (4 × 1017s)−1 = 1.6 × 10−42 GeV.

Observability in ν experiments requires mf & 1 MeV:

|CW |2

Λ4
.

1

(6 × 105TeV)4

(

1 MeV
mf

)3

Stronger limits for larger mf !
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Limits from DM Lifetime and γ’s

OW = gL̄τaφ̃σµνfW a
µν cont’d:

But, wait, that’s not all!

Yuksel & Kistler (arXiv:0711.2906 [astro-ph]):
γ-ray data from INTEGRAL, COMPTEL & EGRET give

Γ(χ → χ′γ) . (1026s)−1

|CW |2

Λ4
.

1

(8 × 107 TeV)4

(

1 MeV
mf

)3

Will use this limit to place limits on other op’s.
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Limits from DM Lifetime and γ’s

OṼ = ¯̀
Rγµfφ†Dµφ̃ → EWSB →

−ig|CṼ |v2

2
√

2Λ2

¯̀
RγµfWµ vertex

If → mf & 2me, f → e+e−ν at tree level:

Γ(f → e+e−ν) =
|CṼ |

2

Λ4

1

1536π3
m5

f

Picciotto & Pospelov (hep-ph/0402178) constrain decays
to e+e− via INTEGRAL 511 keV line:

τṼ ' 5 × 1017yr
10 MeV

mf
.
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Limits from DM Lifetime and γ’s

OṼ = ¯̀
Rγµfφ†Dµφ̃ cont’d:

→
|CṼ |

2

Λ4
.

1

(9.5 × 105 TeV)4
(mf = 20 MeV)

.
1

(2.4 × 106 TeV)4
(mf = 50 MeV)

.
1

(3.8 × 106 TeV)4
(mf = 80 MeV).

Other 4 op’s constrained by mixing into OW and OṼ .
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Limits from DM Lifetime and γ’s
OV R = ¯̀

RγµfūRγµdR:
mf & mπ: tree-level f → π+e−; must have mf . mπ.

OV R mixes into OṼ , gives f → e+e−νe at 1-loop.

All fermions in OV R right-
handed; Diag suppressed by u,
d Yukawas, log divergent.

f `

W

ud

OV R gives a contribution to CṼ /Λ2of

CV R

Λ2

12

(4π)2
mumd

v2
ln

(

Λ2

m2
f

)
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Limits from DM Lifetime and γ’s

OV R cont’d:
Suppression strong enough to make OV R viable DM
interaction.

→
|CV R|

2

Λ4
.

1

(20 TeV)4
(mf = 20 MeV)

.
1

(50 TeV)4
(mf = 50 MeV)

.
1

(80 TeV)4
(mf = 80 MeV)

Strong constraints, but weak enough to be interesting for
ν experiments!
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Limits from DM Lifetime and γ’s
1-loop calc of OV R mixing into OṼ does not correctly
represent contributions from low (. few × 100 MeV)
quark momenta.

Instead, consider diagram where f decays via π+.*

Diagram suppressed by f , e mass via π coupling.

dΓ

dq2
=

G2
F |Vud|

2f4
πm2

e

1024π3mfΛ4

q2(m2
f − q2)2

(m2
π − q2)2

Gives limits on NP scale of few-50 TeV for
20 MeV < mf < 80 MeV.

Similar to 1-loop results; take 1-loop limits.

*Thanks to Mark Wise for this calculation.
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Other constraints onOV R

Mixing into OW only at two loops; strongly
suppressed.

ν − f mixing:
OV R gives neutrino mass term L̄φ̃f at 2 loops.
Allows → f → ννν̄ and f → νe+e−.
Mixing angle proportional to e, u, and d Yukawas,
O(10−16) → τ ∼ 1026 s.

π+ → e+f :
Searches for heavy ν’s in π decay give limits on
|CV R|/Λ

2 of order 1/(10 TeV)2 for mf < 130 MeV.
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Limits from DM Lifetime and γ’s

OSd(= εijL̄
ifQ̄jdR) and OSu(= L̄f ūRQ):

Can mix into OW via 2-loop
diag, give f → νγ. Only 1
Yukawa suppression.

f
`

ν

W

ud

γ

Order-of-magnitude estimate for mixing into OW :

CW (v)

Λ2
∼

CSu,Sd(Λ)

Λ2

1

(4π)4
g2mu,d

v
ln

(

Λ2

v2

)
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Limits from DM Lifetime and γ’s

OSd and OSu cont’d:
Suppression is not enough to make f long-lived.
Order-of-magnitude limit:

CSu,Sd

Λ2
< O

(

1

(103 TeV)2

)

OT = εijL̄
iσµνfQ̄jσµνdR:

Mixes into OW at one-loop order, with one Yukawa
suppression → even tighter limit.
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Most interesting op: OV R

Of 6 op’s, 5 strongly constrained by DM lifetime &
decays.

OV R least constrained operator–will concentrate on
this operator in neutrino experiments.

Led to mass range mf . mπ–light DM!

Operator looks like right-handed ν interaction.
Will not assume usual related physics (W ′, Z ′, etc).
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Review: MeV Dark Matter

Original motivation: 511 keV line observed from
galactic center by INTEGRAL, flux evades
explanation.

Thought that 511 keV line could get contribution
from positrons produced in DM-DM annihilations to
e+e−.

Beacom & Yuksel and Sizun et al showed injection
energy of positrons had to be less than few MeV.

→ Will assume f has small (or no) contribution to
511 keV line.
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MeV Dark Matter

Must consider relic density.

Lee-Weinberg bound: Heavy ν interacting with
weak-scale cross-section must have mass
> O(GeV) in order to not overclose universe.

Raising Λ → cross-section smaller → interaction
freezes out earlier → Lee-Weinberg bound even
stronger.

OV R cannot be f ’s only interaction.

f must have some stronger-than-weak interaction to
give correct relic density.

Hidden Light Dark Matter in Neutrino Detectors – p.23/34



MeV Dark Matter

Correct relic density requires velocity-averaged
annihilation cross-section at freezeout
〈σann|vr|〉 ∼ O(10−25)cm3/s.

If annihilates as ff̄ → e+e−, same 〈σann|vr|〉 would
overproduce 511-keV line.

Solution: ff̄ → e+e−, but 〈σann|vr|〉

velocity-dependent, 〈σann|vr|〉 ∼ v2
r (p-wave).

(vr ∼ 10−3 today.)

Light U-boson with axial-vector coupling to f (i.e. as
if f Majorana) and vector coupling to electrons does
the trick.

(Boehm et al, Fayet.....)
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MeV Dark Matter

We’ll just introduce an operator:

CV e

Λ2
a
OV e =

CV e

Λ2
a

f̄γµγ5f ¯̀
Rγµ`R

Assume Λ2
a high enough that eff. op. formalism valid.

Gives 〈σann|vr|〉 ∼ v2
r .

Correct freeze-out cross-section if

CV e

Λ2
a

∼
1

(few GeV)2
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MeV Dark Matter
Or, we could couple f to neutrinos! Add op:

CV τ,µ

Λ2
a

OV τ,µ =
CV τ,µ

Λ2
a

f̄γµfL̄τ,µγµLτ,µ

Lepton fields of µ or τ flavor, no ff̄ → e+e−.

f nonrelativistic during freezeout and at late times:
Only ff̄ → νν̄ channel open (unless mf > mµ).

Velocity-independent cross-section OK.

Again, need scale of order few GeV.

Limits on 〈σann|v|〉 are O(10−25) cm3/s.

(Palomares-Ruiz and Pascoli, PRD 77 (2008))

A little room left!
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MeV Dark Matter

Supernova cooling:
If f interacts too strongly with ν’s, can cause ν’s to be too
trapped inside supernova, causing it to cool too slowly.
Only a problem if mf . 10 MeV.

(Fayet et al., Phys Rev. Lett 96 (2006))

Big-Bang Nucleosynthesis:
f coupled to neutrinos: OK if mf > 10 MeV.
f coupled to electrons: Only p-wave cross-section OK.

(Serpico and Raffelt, PRD 70 (2004))
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Neutrino Detector Cross-Section

If f comprises all DM, ΦDM ∼ 108/cm2s.

Take ν̄e flux limit from Super-K:

Φν̄e
< 1.2/cm2s for 20 MeV . Eν . 80 MeV

(8 orders of magnitude smaller!)

Ratio of cross-sections:

σO(mf = Eν)

σSM (Eν)
=

(

c

vf

)

|CV R|
2v4

(8)Λ4

f nonrelativistic → vf ' 10−3c: extra enhancement.
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Results from Super-K

Results:

mf = 20 MeV :
|CV R|

2

Λ4
.

1

(120 TeV)4

mf = 50 MeV :
|CV R|

2

Λ4
.

1

(90 TeV)4

mf = 80 MeV :
|CV R|

2

Λ4
.

1

(80 TeV)4

Limits weaker if f only fraction of DM.

But, very strong limits!

Hidden Light Dark Matter in Neutrino Detectors – p.29/34



Open Questions

Questions not addressed, (but interesting!):

Other mass ranges in ν exp’ts?

Neutral current f1 → f2, f → ν at ν detectors and
DM direct search experiments?

Scalar DM?

Lower bounds on scale of NP far beyond what
accessible at LHC–what if f contained in hidden
sector, but not DM?

Models?
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Conclusions

We don’t know much about DM–should consider
“nontraditional” interactions!

Model-independent analysis of DM interaction
f̄p → ne+in ν exp’ts.

Inelasticity of interaction allows us to probe different
mass range (∼ 100 MeV).

Find one operator (comparatively!) unconstrained
for light DM case.

Reach of ν exp’ts to find light DM huge (∼ 100 TeV!)

Should see if can be applied elsewhere!

DM & ν exp’ts might be telling us more than we
think!
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Backup Slides

Hidden Light Dark Matter in Neutrino Detectors – p.32/34



Other Flavors?

Changing quark flavors?

Need u, d quarks for f̄p → n`+.

Right-handed quark fields must be from 1st
generation; Left-handed doublets can be from any.

OSu: Limit no longer valid.

OSd, OT : diagrams CKM-suppressed, can arrange
unconstrained linear combinations of op’s.

Would be unexpected that flavor-nondiagonal cases
be at much lower NP scale.

OV R: All right-handed fields; other flavors not
applicable here.
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Other Flavors?

Changing lepton flavor?

mf > m` to be useful for charged-current interaction
in neutrino expts.

OW , OSd, OSu, and OT :
Constraints independent of lepton flavor, except
interested in larger mf ; constraints only get stronger.

OṼ :
mf & m` gives tree-level decay f → `−e+νe.

OV R:
Possibly interesting mass range (µ case):
105 MeV . mf . 245 MeV. Left for further study.
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