Diffuse Ultrahigh Energy Neutrino Fluxes and Physics beyond the Standard Model

Raj Gandhi

Harish-Chandra Research Institute, Allahabad, India

work done with Atri Bhattacharya, Sandhya Choubey and Atsushi Watanabe
Over the past three decades, a wealth of data from a wide variety of experiments have fuelled our understanding of neutrino crosssections, masses and mixings.
Over the past three decades, a wealth of data from a wide variety of experiments have fuelled our understanding of neutrino cross sections, masses and mixings.

Inspite of the fact that almost all of our information has been garnered from experiments below a $\sim 10\ \text{GeV}$, it has become clear that neutrino physics provides a unique window into physics beyond the SM.
Over the past three decades, a wealth of data from a wide variety of experiments have fuelled our understanding of neutrino crosssections, masses and mixings.

Inspite of the fact that almost all of our information has been garnered from experiments below a $\sim 10 \text{ GeV}$, it has become clear that neutrino physics provides a unique window into physics beyond the SM.

Although the neutrino is the most abundant particle in the universe after the photon, the only extra-terrestrial neutrinos observed are those from the sun and the few events from SN1987A.
In terms of sources and energy range explored, Neutrino Astronomy remains largely uncharted territory.

(Fig from Halzen 07.)
In terms of sources and energy range explored, Neutrino Astronomy remains largely uncharted territory.
ICECUBE, 1 Km3 of instrumented ice by 2011, 80 strings of Digital Optical Modules, 59 of which have been installed.
ICECUBE, 1 Km3 of instrumented ice by 2011, 80 strings of Digital Optical Modules, 59 of which have been installed.

ANTARES, NEMO Cerenkov detectors in the Mediterranean, eventually to be part of KM3NET. AMADEUS, an acoustic detector taking data since Dec 07, is also part of ANTARES setup.
Current and Future Detectors

- **AUGER** in Argentina, for UHE CR showers and GZK neutrino detection, with charged particle detection (water tanks) and Flourecence (telescope array) detection capabilities. Bound set on ν_τ flux.
AUGER in Argentina, for UHE CR showers and GZK neutrino detection, with charged particle detection (water tanks) and fluorescence (telescope array) detection capabilities. Bound set on ν_τ flux.

ANITA, a balloon payload experiment over the Antarctic, monitoring an effective volume of 10^6 Km^3 (!) of Ice for Radio emission by EM showers created by neutrino events with energies in excess of 10^9 GeV (Askaryan effect). Bound on total ν flux at these energies set.
At Tev energies, downgoing neutrino events obscured by background from atmospheric muons, hence upgoing events comprise signal. Earth opaque to PeV neutrinos, hence downgoing and horizontal events become important at these energies and above.
At Tev energies, downgoing neutrino events obscured by background from atmospheric muons, hence upgoing events comprise signal. Earth opaque to PeV neutrinos, hence downgoing and horizontal events become important at these energies and above.

Flavour identification of muons possible via the long charged track and (hadronic) shower characteristic of ν_μ CC interactions.
At Tev energies, downgoing neutrino events obscured by background from atmospheric muons, hence upgoing events comprise signal. Earth opaque to PeV neutrinos, hence downgoing and horizontal events become important at these energies and above.

Flavour identification of muons possible via the long charged track and (hadronic) shower characteristic of ν_μ CC interactions.

Counting of the combined total of ν_e CC and NC interactions of all flavours via identification of electromagnetic and hadronic showers unaccompanied by long charged lepton track.
Icecube sees showers as a mushroom of photoelectrons with radius $100 - 300$ m.
Icecube sees showers as a mushroom of photoelectrons with radius $100 - 300$ m.

ν_τ CC interactions produce a rapidly decaying τ in most cases, along with a (hadronic) shower. Above a PeV, τ events detectable as “double bang”, “lollipops” or “earth-skimming” (AUGER). ν_τ remains alive in the earth, unlike ν_μ, ν_e which get attenuated above a PeV.
Icecube sees showers as a mushroom of photoelectrons with radius $100 - 300$ m.

ν_τ CC interactions produce a rapidly decaying τ in most cases, along with a (hadronic) shower. Above a PeV, τ events detectable as “double bang”, “lollipops” or “earth-skimming” (AUGER). ν_τ remains alive in the earth, unlike ν_μ, ν_e which get attenuated above a PeV.

The 3 categories of detected events are thus:

- Long muon tracks, counting ν_μ CC events
- Showers, counting ν_e CC + NC, ν_τ (CC at lower E) + NC and ν_μ NC.
- Double bang and lollipops, counting ν_τ above a few PeV.
In **ICECUBE**, muon energies are reconstructed up to 30% in the energy range 10^5 GeV to 3×10^7 GeV. The large number of events allows spectral shape reconstruction.
In ICECUBE, muon energies are reconstructed up to 30% in the energy range 10^5 GeV to 3×10^7 GeV. The large number of events allows spectral shape reconstruction.

Shower energy resolution possible to ± 0.1 on a log(E/GeV) scale.
In **ICECUBE**, muon energies are reconstructed up to 30% in the energy range 10^5 GeV to $3 \times 10^7 \text{ GeV}$. The large number of events allows spectral shape reconstruction.

Shower energy resolution possible to ± 0.1 on a log(E/GeV) scale.

Conservatively, assume that within a given decade of energy, the number of ν_μ events and the number of ν_e events can be measured to within 20%.
In ICECUBE, muon energies are reconstructed up to 30% in the energy range 10^5 GeV to 3×10^7 GeV. The large number of events allows spectral shape reconstruction.

Shower energy resolution possible to ± 0.1 on a log(E/GeV) scale.

Conservatively, assume that within a given decade of energy, the number of ν_μ events and the number of ν_e events can be measured to within 20%.

The number of shower events in the energy bin then becomes a measure of the distortion from the spectral shape set by the muon events.
The Generic UHE Accelerator . . .

(Fig from Halzen 07.)
Charged particle (e, p, ions) acceleration achieved by confining them in its B field. Electrons quickly lose their energy via synchrotron radiation, and the photons created act as targets for the protons.
Charged particle \((e, p, \text{ions})\) acceleration achieved by confining them in its B field. Electrons quickly lose their energy via synchrotron radiation, and the photons created act as targets for the protons.

\[p + \gamma \rightarrow \Delta^+ \rightarrow \pi^0 + p \text{ and } p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n \]

interactions. Pions decay to \(\mu\) and \(\nu\), protons tend to stay confined, neutrons and neutrinos leave the accelerator, with the former later decaying to give protons.
Charged particle \((e, p, \text{ions})\) acceleration achieved by confining them in its B field. Electrons quickly lose their energy via synchrotron radiation, and the photons created act as targets for the protons.

\[p + \gamma \rightarrow \Delta^+ \rightarrow \pi^0 + p \text{ and } p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n \]

interactions. Pions decay to \(\mu\) and \(\nu\), protons tend to stay confined, neutrons and neutrinos leave the accelerator, with the former later decaying to give protons.

The branching ratios, all of \(\sim O(1)\) are known from particle physics, giving comparable and co-related fluxes for CR, \(\gamma\) rays and \(\nu\). Observations of TeV \(\gamma\) rays and CR thus can put bounds on the UHE \(\nu\) fluxes

(Waxman and Bahcall; Mannheim, Protheroe and Rachen)
Spectral shape at source depends on the astrophysics model for that particular class of sources. A very important class of sources are Active Galactic Nuclei (AGN). Typically, AGNs lead to UHE neutrino fluxes which are much above those from other types of sources.
Spectral shape at source depends on the astrophysics model for that particular class of sources. A very important class of sources are Active Galactic Nuclei (AGN). Typically, AGNs lead to UHE neutrino fluxes which are much above those from other types of sources.

Once the source flux of neutrons (protons), photons and neutrinos is known, two important steps are necessary to arrive at a prediction for the diffuse neutrino flux at Earth.
Accounting for Energy losses for the particles as they propagate through the universe. Besides redshift, extra-galactic CR suffer from losses due to photo-hadronic interactions with the photon background, and due to the Bethe-Heitler process.
Accounting for Energy losses for the particles as they propagate through the universe. Besides redshift, extra-galactic CR suffer from losses due to photo-hadronic interactions with the photon background, and due to the Bethe-Heitler process.

The flux is integrated over the source distribution and normalized using the observations of the Extra Galactic Gamma Ray background and the measured flux of UHE Cosmic Rays. (Mannheim, Protheroe and Stanev, Protheroe and Johnson, Waxman and Bahcall; Mannheim, Protheroe and Rachen)
This normalization leads to upper bounds on the UHE neutrino fluxes. (Waxman and Bahcall; Mannheim, Protheroe and Rachen)
This normalization leads to upper bounds on the UHE neutrino fluxes. (Waxman and Bahcall; Mannheim, Protheroe and Rachen)

Since the bounds are obtained using maximal values of the flux possible at a given energy, flux distortions (enhancements, suppressions) are reflected by them. We use them as a means of studying the effects of physics beyond the SM.
**Diffuse Fluxes . . . **

All reference plots

- **Bounds on Diffuse optically thin (neutron transparent) source fluxes** (Waxman and Bahcall, Mannheim, Protheroe and Rachen)

- **Maximal Diffuse flux from Optically thick (neutron opaque) sources** (Mannheim, Protheroe and Rachen)

- **Note that all bounds are flavour-independant, since oscillations democratize flavours in a standard source**
Diffuse Fluxes . . .

Diffuse muon neutrino flux

\[\Phi E^{-2} \left[\text{GeV sr}^{-1} \text{s}^{-1} \text{cm}^{-2} \right] \]

- Atmospheric
 - AMANDA-II (1yr) [\(1\)]
 - AMANDA (4yr) [\(2\)]
- MPR
 - MPR bound [\(3\)]
- Gravitational waves (GRB) [\(4\)]

WB

100 - 500 events per km\(^2\) year

Full IceCube, 1 year

HBL blazars

\[\log(E_\nu / \text{GeV}) \]

High Energy Neutrinos . . .

July 16, 2009 Fermilab

R. Gandhi -- p. 16
Neutrinos from pion decay have the flavour content

\[\nu_e : \nu_\mu : \nu_\tau = 1 : 2 : 0. \]

With \(L_{osc} = \frac{4\pi E_\nu}{\Delta m^2} \sim 2.5 \times 10^{-24} \frac{E}{1\text{eV}} \text{Mpc} \), oscillations over cosmological length scales average out and give a flavour content at Earth \(\nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1 \).

It has been shown that these ratios can be altered by physics beyond the Standard Model (Beacom, Bell, Hooper, Pakvasa and Weiler)
Neutrinos from pion decay have the flavour content
\[\nu_e : \nu_\mu : \nu_\tau = 1 : 2 : 0. \]

With \(L_{\text{osc}} = \frac{4\pi E_\nu}{\Delta m^2} \sim 2.5 \times 10^{-24} \frac{E}{1\text{eV}} \) Mpc, oscillations over cosmological length scales average out and give a flavour content at Earth \(\nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1 \).

It has been shown that these ratios can be altered by physics beyond the Standard Model (Beacom, Bell, Hooper, Pakvasa and Weiler).

We note that oscillations make the flavour spectra identical in shape due to averaging. Muon events provide the most reliable mode of measuring this common spectral shape, expected to follow an \(E^{-2} \) behaviour.
Knowing that shower events comprise ν_e CC and all NC events, one can infer, given the spectral shape from muon events and the $1:1:1$ ratio induced by oscillations (for the standard source ratio $1:2:0$) the expected number of shower events in an appropriate energy bin.
Knowing that shower events comprise ν_e CC and all NC events, one can infer, given the spectral shape from muon events and the $1:1:1$ ratio induced by oscillations (for the standard source ratio $1:2:0$) the expected number of shower events in an appropriate energy bin.

Distortions in the expected spectrum of shower versus muon events would be indicative of non-standard physics, some possibilities of which we examine here.
Two body neutrino decay
\[\nu_i \rightarrow \nu_j + X, \nu_i \rightarrow \bar{\nu}_j + X \]
where \(X \) is a light or massless are only weakly constrained, with the limit being \(\tau/m \geq 10^{-4} \text{ sec/eV} \).

(Beacom and Bell)
Two body neutrino decay

\[\nu_i \rightarrow \nu_j + X, \nu_i \rightarrow \bar{\nu}_j + X \]

where \(X \) is a light or massless are only weakly constrained, with the limit being \(\tau / m \geq 10^{-4} \text{ sec/eV} \).

(Beacom and Bell)

Depending on the hierarchy, for decays which are complete, ratios will change from \(\nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1 \) to \(6 : 1 : 1 \) (NH) or \(0 : 1 : 1 \) (IH)

(Beacom, Bell, Hooper, Pakvasa and Weiler)
Two body neutrino decay

\[\nu_i \rightarrow \nu_j + X, \nu_i \rightarrow \bar{\nu}_j + X \]

where \(X \) is a light or massless are only weakly constrained, with the limit being \(\tau/m \geq 10^{-4} \text{ sec/eV} \).

(Beacom and Bell)

Depending on the hierarchy, for decays which are complete, ratios will change from \(\nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1 \) to \(6 : 1 : 1 \) (NH) or \(0 : 1 : 1 \) (IH)

(Beacom, Bell, Hooper, Pakvasa and Weiler)

Ratios will exhibit energy dependance if decays are incomplete

(Barenboim and Quigg)
Decay in the Normal hierarchy leads to large number of shower events, comparable (but less) muon flux.

Decay in the Inverted hierarchy case leads to highly suppressed shower fluxes.
The flux at Earth for a given flavour α is

$$\phi_{\nu_\alpha}(E) = \sum_{i\beta} \phi_{\nu_\beta}^{\text{source}}(E) |U_{\beta i}|^2 |U_{\alpha i}|^2 e^{-L/\tau_i(E)}$$ \hspace{1cm} (1)$$

$$L \gg \tau_i \rightarrow \sum_{i(\text{stable}),\beta} \phi_{\nu_\beta}^{\text{source}}(E) |U_{\beta i}|^2 |U_{\alpha i}|^2 ,$$ \hspace{1cm} (2)$$

Besides partial decay, other new physics, in combination or by itself, like CP violation, Lorentz Violation and the presence of Pseudo-Dirac neutrino states would affect the final magnitude and spectral shape of the flux of flavour ν_α.
The flux at Earth for a given flavour α is

$$\phi_{\nu_\alpha}(E) = \sum_{i\beta} \phi_{\nu_\beta}^{\text{source}}(E) |U_{\beta i}|^2 |U_{\alpha i}|^2 e^{-L/\tau_i(E)}$$ \hspace{1cm} (3)$$

$$L \gg \tau_i \rightarrow \sum_{i(\text{stable}),\beta} \phi_{\nu_\beta}^{\text{source}}(E) |U_{\beta i}|^2 |U_{\alpha i}|^2,$$ \hspace{1cm} (4)$$

Besides partial decay, other new physics, in combination or by itself, like CP violation, Lorentz Violation and the presence of Pseudo-Dirac neutrino states would affect the final magnitude and spectral shape of the flux of flavour ν_α.
Diffuse Fluxes ... Decay...

Decay effects: \(t_2/m = 0.1, t_3/m = 0.1 [\text{ev/s}] \), Normal hierarchy.

\[
\tau/m = 0.1 \text{sec/eV}, \text{ Normal Hierarchy, Optically Thin Sources}
\]

Shower Events significantly rise above Muon events below \(10^7 \) GeV and become equal thereafter.
Decay effects: $t_2/m = 0.1$, $t_3/m = 0.1$ [ev/s]. Inverted hierarchy.

- $\tau/m = 0.1\text{sec/eV}$, Inverted Hierarchy, Optically Thin Sources
- Shower Events significantly below Muon events for energy $< 10^7$ GeV and become equal thereafter.
- Decay offers high level of sensitivity to the hierarchy, and the possibility of ball-park estimations of lifetimes.
Diffuse Fluxes... Decay...

Decay effects: $t_2/m = 0.1$, $t_3/m = 0.1$ [ev/s], Normal hierarchy.

- $\tau/m = 0.1$ sec/eV, Normal Hierarchy, Optically Thick Sources
- Shower Events above Muon events for 10^8 GeV and become equal thereafter. Spectral shapes similar.
- Sensitivity in the range $10^3 \geq \tau/m \geq 10^{-3}$ sec/eV
Diffuse Fluxes

Decay effects: $t_2/m = 0.1$, $t_3/m = 0.1$ [eV/s], Inverted hierarchy.

- $\tau/m = 0.1$ sec/eV, Inverted Hierarchy, Optically Thick Sources
- Shower Events undetectably below Muon events for energy $< 10^7$ GeV and rising between $10^7 - 10^8$ GeV, become equal thereafter. Spectral shapes distinguishably altered
- Sensitivity in the range $10^3 \geq \tau/m \geq 10^{-3}$ sec/eV
Decay . . . Sensitivity to θ_{13} . . .

Effect of θ_{13} variation on Decay: $t_2/m = 0.1$, $t_3/m = 0.1$ [ev/s]. Inverted hierarchy.

\[\tau/m = 0.1 \text{sec}/\text{eV}, \text{ Inverted Hierarchy, Optically Thin Sources} \]

- Shower Events significantly below Muon events for energy $< 10^7$ GeV and become equal thereafter.
- Shower events above Icecube threshold for non-zero θ_{13} and undetectably low as it approaches zero.
A non-zero CP phase δ for decaying neutrinos imposes a $\cos \delta$ dependance on the fluxes. (Beacom, Bell, Hooper, Pakvasa, Weiler)
A non-zero CP phase δ for decaying neutrinos imposes a $\cos \delta$ dependence on the fluxes. (Beacom, Bell, Hooper, Pakvasa, Weiler)

Large correlated variations in the ν_τ and ν_μ fluxes for normal hierarchy, reflected in the relative number of long track muon events versus showers.
A non-zero CP phase δ for decaying neutrinos imposes a $\cos \delta$ dependence on the fluxes. (Beacom, Bell, Hooper, Pakvasa, Weiler)

Large correlated variations in the ν_τ and ν_μ fluxes for normal hierarchy, reflected in the relative number of long track muon events versus showers.

Heightened sensitivity to variations in θ_{13}. Detection of τ events assumes importance here. (Beacom, Bell, Hooper, Pakvasa, Weiler)
Sensitivity to the CP Phase \ldots Decay..

Effect of CP violation on Decay, $\tau/m = 0.1$ [sec/eV], Normal hierarchy.

\[E^2(E) \text{ [GeV cm}^{-2} \text{s}^{-1} \text{ sr}^{-1}] \]

\[F \text{ [sec/cm}^2 \text{s}^{-1} \text{ sr}^{-1}] \]

- v_μ flux without Decay
- v_μ flux, CP phase from 0 to π, $\theta_{13} = \text{max}$
- v_e flux, CP phase from 0 to π, $\theta_{13} = \text{max}$

\begin{itemize}
 \item \(\tau/m = 0.1 \text{ sec/eV, Normal Hierarchy, Optically Thick Sources} \)
 \item Shower Events versus long track events very sensitive to this variation which causes a large change in number of muon events
\end{itemize}
Sensitivity to the CP Phase

\[\theta_{13} \text{ variation effect on CP violation, } t/m = 0.1 \text{ [ev/s], Normal hierarchy.} \]

\[\tau/m = 0.1 \text{ sec/eV, Normal Hierarchy, Optically Thick Sources CP phase effect enhanced if variation over range of } \theta_{13} \]
The presence of very small Majorana mass terms (compared to the Dirac mass scale) leads to almost degenerate Majorana states, each of mass m_D.
Sensitivity to Pseudo-Dirac Neutrino States

The presence of very small Majorana mass terms (compared to the Dirac mass scale) leads to almost degenerate Majorana states, each of mass m_D.

UHE neutrinos provide perhaps the only possibility of probing mass differences much smaller than solar and atmospheric Δm^2.

(Keranen, Maalampi and Myyrylainen; Beacom, Bell, Hooper, Pakvasa, Weiler)
Sensitivity to Pseudo-Dirac neutrino States

Pseudo-Dirac effects, $\delta m^2 = 1 \times 10^{-18} \text{[eV2]}$.

\[\Delta m^2 = 10^{-14} \text{eV}^2, \text{Optically Thick Sources} \]

Flux distortions small, with factor of 2 fall where oscillations present.

Sensitivity in the range $\Delta m^2 = 10^{-12} - 10^{-17} \text{eV}^2$
Small mass particles travelling large distances provide an opportunity to detect tiny violations of Lorentz invariance and CPT via oscillations. This would be reflected in UHE fluxes and event rates.
Small mass particles travelling large distances provide an opportunity to detect tiny violations of Lorentz invariance and CPT via oscillations. This would be reflected in UHE fluxes and event rates.

As a simple example, we consider Lorentz violations arising from differences in propagation for different flavours, parametrised by an off diagonal parameter in a 2 flavour effective Hamiltonian. (Kostelecky and Mewes; Hooper, Morgan and Winstanley)
Small mass particles travelling large distances provide an opportunity to detect tiny violations of Lorentz invariance and CPT via oscillations. This would be reflected in UHE fluxes and event rates.

As a simple example, we consider Lorentz violations arising from differences in propagation for different flavours, parametrised by an off diagonal parameter in a 2 flavour effective Hamiltonian. (Kostelecky and Mewes; Hooper, Morgan and Winstanley)

Fluxes and bounds strongly sensitive to LV.
Lorentz Violation induced Flux changes . . .

Effect of Lorentz violation, $\alpha_1 = 1 \times 10^{-26}$ GeV$^{-1}$.

- τ events completely suppressed, Optically Thick Sources
- AUGER, ICECUBE would record deficit of double-bang, lolipop and earth-skimming events
Lorentz Violation induced Flux changes

Effect of Lorentz violation, $a_1 = 1 \times 10^{-30}$ GeV$^{-1}$.

Sensitivity range covers 4-5 orders of magnitude

In general, muon events enhanced, whereas shower and tau events supressed.
In the absence of non-standard physics, diffuse fluxes of all flavours will arrive at Earth in the ratio $1 : 1 : 1$.
In the absence of non-standard physics, diffuse fluxes of all flavours will arrive at Earth in the ratio $1 : 1 : 1$.

Diffuse fluxes of all flavours are massaged into a common spectral shape by oscillations, and MPR and WB bounds tell us their max values using EGRB and CR data.
Conclusions

In the absence of non-standard physics, diffuse fluxes of all flavours will arrive at Earth in the ratio $1 : 1 : 1$.

Diffuse fluxes of all flavours are massaged into a common spectral shape by oscillations, and MPR and WB bounds tell us their max vaues using EGRB and CR data.
In the absence of non-standard physics, diffuse fluxes of all flavours will arrive at Earth in the ratio $1 : 1 : 1$.

Diffuse fluxes of all flavours are massaged into a common spectral shape by oscillations, and MPR and WB bounds tell us their max values using EGRB and CR data.

BSM physics changes this picture, e.g. if neutrinos decay with lifetimes in the range $\tau/m = 10^{-3} - 10^3$ sec/eV, with/without a non-zero CP phase, or pseudo Dirac neutrinos with very small mass differences are present, or we have Lorentz violation or some combination of these effects.
Conclusions . . .

Large spectral distortions in the diffuse flux are possible. One way of representing that is to look at the alterations in the MPR and WB bounds.
Conclusions . . .

Large spectral distortions in the diffuse flux are possible. One way of representing that is to look at the alterations in the MPR and WB bounds.

Overlapping effects possible. Careful comparisons of all 3 flavours necessary. (τ detection important)
Conclusions . . .

Large spectral distortions in the diffuse flux are possible. One way of representing that is to look at the alterations in the MPR and WB bounds.

Overlapping effects possible. Careful comparisons of all 3 flavours necessary. (τ detection important)

Future detectors using different techniques may play an important role towards distinguishing between various scenarios.