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EVIDENCE FOR DARK
MATTER

Cosmic Microwave
Background, Galaxy, and

Supernovae Surveys

S
~e o | P

> -

. . Credit: NASA/WMAP Science Team

Universe accelerating now

APPARENT MAGNITUDLE

N
REDSHIFT Z

Monday, March 16, 2009



EVIDENCE FOR DARK
MATTER

Tonry et al.
2003

Riess et al.
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Missing the Particle

Standard Model of
PhYSlCS StOI'y FUNDAMENTAL PARTICLES AND INTERACTIONS
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Want to observe it
directly in the lab

Can produce it directly
at colliders (LHC)

LLook for interactions
with dark matter in our

halo
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ENDGOAL (WIMP)

e Observe it at colliders,
direct, indirect
experiments

® Measure its mass,
couplings (and
potentially for its
interacting partners)

e Compute relic density
and compare to WMAP

® Celebrate!
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ENDGOAL (WIMP)

e Observe it at colliders,
diI'ECt, indirect tang = 10, A = 0,11 >0 CMS

with systematics

experiments 10 16"

jet+MET

® Measure its mass, N e e
couplings (and e T | |
potentially for its
interacting partners)
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and compare to WMAP m, (GeV)

o Celebrate! Discover SUSY at the LHC
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ENDGOAL (WIMP)

e Observe it at colliders,
direct, indirect
experiments

LHC+ILC—1000

N
O

® Measure its mass,
couplings (and
potentially for its
interacting partners)

probability density dP/dx

O

e Compute relic density
and compare to WMAP

® Celebrate!
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Timeline

LHC
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EARLY STEPS IN A
LONG JOURNEY

® Avoid theoretical prejudice, get the
complete picture

® Look for new signals of DM, don’t miss
a discovery

o Test signals of DM, don’t make any
mistakes




OUTLINE

e Dark matter searches: Need for
nonstandard searches

o Colliders: Fake dark matter

® Direct detection: Inelastic & other
nonstandard dark matter interactions

® Conclusions




DM COLLIDER SIGNAL

Dark matter escapes

detector

Imbalance 1n transverse

energy-momentum

Jets+leptons+MET




STEPPING BACK




STEPPING BACK

® Does this signal (MET events) truly
indicate a new stable particle?
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STEPPING BACK

® Does this signal (MET events) truly
indicate a new stable particle?

® Are there alternative explanations with
no WIMP-like particle?

o If so, how can we tell these scenarios
apart?




Fake Dark Matter sc. deGouvea

® Neutrinos are a known
source of missing
energy, new physics w/
neutrinos can fake the
DM signal

® Look for “SUSY”
lookalikes, cascades that
produce neutrinos

® Assume no visible
decays or displaced
vertices
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RPV IN THE MSSM

e Examples of fake dark matter exist
within the best known BSM theory

e R-parity violation with neutrinos must
involve L supertield

e LLE and LQD couplings (considered
one at a time) lead to different
phenomenologies




e Well studied RPV operator

® Collider pheno emphasis is
on leptons

e MET still appears from
neutrinos

® Sneutrinos could lead to
visible events, except
usually produced Wlth Invisible RPV Visible RPV

neutrinos
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LLE CONSEQUENCES

e Many charged leptons appear in each
event

e LLE operator violates lepton flavor, so
lepton flavor counts will show asymmetry

® Can look for sneutrino mass peaks in
lepton pairs, potentially of different
flavors




Invisible RPV

Monday, March 16, 2009

Visible RPV

® Less well known

® Fake dark matter
realization 1s more
nontrivial

e Many visible decays,
preventing RPV coupling
from being O(1) and
restricting LSP to not
have visible decay




LLOD CONSEQUENCES

Only down-type squarks have neutrino decays

~ For tan [ > 1, di. squark is heavier than
) df, — drvV partner from D-term splitting

Exception is 3rd-gen squarks, since
top quark is heavier than bottom

Flavor alignment means dr is b-quark
2) dR e b | e G | dLV

First decay is closed if ur 1s top, so again di. is a
b-quark
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LLOD CONSEQUENCES

Only down-type squarks have neutrino decays

~ For tan [ > 1, di. squark is heavier than
) df, — drvV partner from D-term splitting

Exception is 3rd-gen squarks, since
top quark is heavier than bottom

Flavor alignment means dr is b-quark
2) dR e b | e G | dLV

First decay is closed if ur 1s top, so again di. is a
b-quark LQD is bottom heavy and LSP has mass O(mtop)
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MASS MEASUREMENTS

Monday, March 16, 2009

Model independent test:
measure missing mass

A lot of work recently in
terms of mass
measurements

Depending on cascade
topology,

1) Long cascade: can solve 4-
momenta and mass,

2) Short cascade: can look
at max mr2 and find kink at
true mass my




E.G. GLUINO DECAYS
(CHO 0709.0288)

sz (GeV)

Kink 1s close to
— true mass of
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TOP ALL LEPTONIC “DATA”
TAKEN FROM CHO 0804.2185

e For massless particles,
there is no kink

e Difficult to measure no
kink, ¥ fit gives minv < 18
GeV (95% CL)

® Mass resolution can be
expected to be O(10) GeV

A

max Mt2 (my) fort =blv
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FAKE DARK MATTER
SUMMARY

® Missing energy events are not always tied to new
stable particles

e Should know what possibilities exist

e RPV leads to events with leptons and b-jets, can tag
MSSM fake dark matter

e Further predictions, flavor violation, mass of NLSP,
and massless final state, can provide further evidence

® Mass resolution is estimated to be O(10) GeV
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OUTLINE

e Dark matter searches: Need for
nonstandard searches

o Colliders: Fake dark matter

® Direct detection: Inelastic & other
nonstandard dark matter interactions

® Conclusions




DIRECT DETECTION
EXPERIMENTS

Searches Past Present & Future
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DM SCATTERING

For nuclel, Er ~ 10 keV

Also, for given Eg,
DM with v > vimin =
V(2m Er/p2) give

contribution

Example plot of scattering rate

Exponential falloff, due to exponential tail of velocity distribution
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DM SCATTERING

For nuclei, Er ~ 10 keV Is this the most general
possibility?

Also, for given Eg,
DM with v > viin =
V(2m Er/p2) give

contribution

Example plot of scattering rate

Exponential falloff, due to exponential tail of velocity distribution
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e Strategy is different from other experiments

® Does not try to distinguish nuclear from electron
recoils

e Instead it tries to detect a yearly variation in the rate
(modulation)

e Claims a consistent effect which persists in new data
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Dark Matter Speed Distribution

changes annually due to Earth’s

motion around the sun

mpeed i Lab Frame (lanz)
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MODULATION
PREDICTION
dR 21 (t — to)

=
i D=l COS 7

ot, = June 2nd, T = 1 year

® Siy can be positive or negative, starts

negative at low Er and becomes positive
at high Er




2-4 keV

— DAMMA/NAI (0,29 thuxjr) 5 i 5 <DAVIALIBRA (D53 toniyr)>

ﬂta%ﬁetuﬂssrﬂ 31.:g) L %ﬁ\ (mgemass zuskg] 5
A TN é '"r"

o
AL A W RN N N NNt
2500 0 3500 4000 4500

Time (dayv)

A (cpd/kg/keV) | T = i—w (vr) | to (day)

DAMA /Nal
(2-4) keV 0.0252 + 0.0050 1.01 +0.02 | 125+ 30
(2-5) keV (0.0215 + 0.0039 1.01 +0.02 | 140 £ 30
(2-6) keV (0.0200 + 0.0032 1.00 £ 0.01 | 140 £ 22
DAMA /LIBRA
(2—-4) keV 0.0213 £ 0.0032 | 0.997 £ 0.002 | 139+ 10
(2-5) keV 0.0165 + 0.0024 | 0.998 £0.002 | 143 +9
(2-6) keV 0.0107 + 0.0019 | 0.998 £0.003 | 144 + 11
DAMA /Nal+ DAMA /LIBRA
(2—-4) keV 0.0223 + 0.0027 | 0.996 £0.002 | 138 +7
(2-5) keV 0.0178 £ 0.0020 | 0.998 +£0.002 | 145+ 7
(2-6) keV 0.0131 £ 0.0016 | 0.998 £0.003 | 144 + 8

Predictions 1 152
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MORE INFO FROM
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Older data was only able to give two bins
2-6 keV and 6-14 keV
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CONSISTENT DM
MODELS

e DAMA /LIBRA signal data is specific
enough to pin down parameters of dark
matter

® Gives a precise target to compare with
exclusion limits from other experiments

e Use its signal as inspiration for new DM
properties




® Will cover some simple examples
oSI Elastic  (SC, Pierce, Weiner)
e ST Inelastic (SC, Kribs, Smith, Weiner)

® Also considering SI, SD Q2 suppressed
(SC, Pierce, Weiner still in progress)




ELASTIC DARK
MATTER

Only two parameters,
mass and overall rate
o gives a very simple ¢ * .
fit to DAMA data i e e ! keVee
Example fits to DAMA spectra

for different masses




FITS TO THE DATA

o .-_."
& N -~
t Fy
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CDMS-Si

Old two bin contours are shown in empty white contour

New spectral information says that consistent story is constrained
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FITS TO THE DATA

m,(GeV)
Old two bin contours are shown in empty white contour

New spectral information says that consistent story is constrained
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HOW TO TEST ELASTIC
DARK MATTER

® Low mass dark matter means that it is best probed at
low threshold experiments

® CoGeNT, low threshold runs at CDMS (Si or Ge),
more running at XENON, future Argon experiments




INELASTIC DARK
MATTER

N

e Simple modification originally proposed to explain
older DAMA, CDMS conflict (Smith, Weiner)

® One new parameter, mass splitting 0 = mx* — mx

e Change in kinematics has profound effect that can fit
spectrum




IDM SPECTRUM

\/ 1 mNER
Umin —
2my ER i

Inelastic nature changes
spectrum

No longer exponential

at low energies

Shape is suggestive of

DAMA spectrum Example inelastic scattering spectrum
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SUPPRESSED RATES

Threshold velocity is lower

: p opeed in Lab Frame (kan/s)
for heavier targets, so light
mx=100 GeV

targets have suppressed 5=120 keV
rates

(27T in DAMA versus 73Ge
in CDMS)
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IDM FIT

DAMA modulated spectrum
Rate (cpd/ke/keV) Dark matter mass

0.025 - ranges from 70

ﬂ.mf T _ to 250 GeV

Mass splitting

changes to fit

«v Dpeak

8
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IDM CONSTRAINTS

0 =120 keV

; “s‘ ; L 10_40 10_41 ° ',."' 1 | ! ]
~.,200 250 P RS IO g 40
X . o (keV)

“CRESST (W) *
There are constraints, but model is still okay at 90%CL
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weaker for a different
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Spectrum is of the right Rate (CpARghe)

shape, event rate is o0s]

similar, so limit is |
weaker

There is an ongoing
reanalysis of high energy
region

Monday, March 16, 2009



CRESST CONSTRAINT

Zora/SO523 23,8 ke-days
| :

Rate (cpd/kg/keV)
0.010

Light Yield

0.008 |

0,006

0 @ | 0.004 |
Enerey [keV] ‘

Verena/SOS2] 24,11 kg-days
| 1 |

Strongest constraint due to heavy

Light Yield

Tungsten target, however observed

——— — events are not background like
Energy |[keV]
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HOW TO TEST INELASTIC
DARK MATTER

e Heavy targets are preferred, so Xenon, Iodine, and
Tungsten targets can probe all regions

e CDMS can detect it at heavy enough dark matter
mass or small mass splitting

e Most importantly, spectrum is not peaked at low
energy, but instead at intermediate energy region

e Experiments should work on backgrounds and
analyses for this sometimes neglected region
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CONCLUSIONS

e Dark matter will be directly tested in the
near future

e Journey with many steps, should do as
much as possible with the data

® Should be suspicious of signal,
motivates thinking about fake dark
matter signals involving neutrinos




CONCLUSIONS (CONT.)

e Direct detection has many possible signals (used
DAMA signal as inspiration)

e Elastic dark matter (w/ or w/o g2 etfects), can get
low energy suppression through matrix element

e Inelastic dark matter, get low energy suppression
through kinematic requirement on velocity

® Such low energy suppressions could reappear at
future direct detection experiments
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