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The Cabibbo -Kobayashi  -Maskawa  matrix

Gauge interactions do not violate flavor:

Yukawa interactions (mass) violate flavor:
fermion type

family indices

LGauge =
∑

ψ,a,b

ψ̄a(i∂/ − gA/ δab)ψb

LYukawa =
∑

ψ,a,b

ψ̄La H Y abψRb

= Q̄LHYUuR + Q̄LHYDdR + L̄LHYEER

The Yukawas are complex 3x3 matrices:
YU = ULY diag

U UR, YD = DLY diag
D DR, YE = ELY diag

E ER
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✹ ★ ★

★ = Real Nobel Laureate
✹ =  Virtual Nobel Laureate
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From Gauge to Mass eigenstates

• neutral currents: 

• charged currents:

ū0
LZ/ u0

L =⇒ ūLZ/ ULU†
LuL = ūLZ/ uL

uj
L

di
L

W−

∝ Vji

3 angles + 1 phase

ū0
LW/ d0

L =⇒ ūLW/ ULD†
LdL = ūLW/ VCKMdL
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Standard parametrization (θ12, θ23, θ13, δ):

Wolfenstein parametrization (λ, A, ρ, η):




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13








1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



 + O(λ4)

• where                     and                 

• θ13<< θ23<< θ12, δ ~ O(1)
cij = cos θijsij = sin θij

• λ, A, ρ, η ~ O(1)
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


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





λ: β-decay, K→πlν, D→(π,K)lν, νN→μX, ....

A: B→D(*)lν, B→Xclν
=1: t→Wb (single top)

A: no direct meas. (B→Xsγ, ΔMBs, ...)

ρ,η: B→πlν, B→Xulν
       CP violation

ρ,η: no direct meas. (ΔMBd, CP violation, K mixing)

5

The Cabibbo -Kobayashi  -Maskawa  matrix✹ ★ ★

✹ =  Virtual Nobel Laureate
★ = Real Nobel Laureate



Enrico Lunghi

Unitarity Triangles:

βγ

α

VcdV
∗
cb

V u
d
V

∗
u
b V

td V ∗
tb

Vtd = |Vtd| e−iβ

Vub = |Vub| e−iγ

βsVtsV
∗
tb

V
u

s
V
∗ u
b

VcsV
∗
cb

βs = arg(Vts) = ηλ2 + O(λ4)
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The Unitarity Triangle Fit

7

β: time dependent ACP in 
B→J/ψ K and related modes 
(very clean)

α: time dependent ACP in 
B→(ππ,ρρ,ρπ) modes (large 
penguin pollution removed with 
isospin analysis)

γ: B→D(*)K(*) decays (model 
independent studies - separation 
of D-meson flavor and CP 
eigenstates )

εK: CP violation in K mixing
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• Lattice QCD presently delivers 2+1 flavors (aka unquenched) 
determinations for all the quantities that enter the fit to the UT

• Results coming from different lattice collaborations are often 
correlated

MILC gauge configurations: fBd, fBs, ξ,  Vub, Vcb, fK

use of the same theoretical tools: BK, Vcb

experimental data:  Vub

• It becomes important to take these correlation into account 
when combining saveral lattice results

• We assume all errors to be normally distributed (!)

Treatment of lattice inputs and errors

8

[Laiho,EL,Van de Water, 0910.2928]
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• We treat all systematic uncertainties as gaussian

• Most relevant systematic errors come from lattice QCD 
(BK,ξ) and are obtained by adding in quadrature several 
different sources of uncertainty

• Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

9
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Comments on systematic uncertainties
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Comments on systematic uncertainties
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Comments on systematic uncertainties

12

Gaussian
Flat

1.5Σ !gaussian"
13" !gaussian"
0.7" !flat"

0.60 0.65 0.70 0.75 0.80 0.85
0

2

4

6

8

10

12

14

B
#
K

pdf

B
#
K $ 0.720 % 0.013stat % 0.037syst

• We treat all systematic uncertainties as gaussian

• Most relevant systematic errors come from lattice QCD 
(BK,ξ) and are obtained by adding in quadrature several 
different sources of uncertainty

• Gaussian treatment seems a fairly conservative choice



Enrico Lunghi

Meson Mixing

di

dk di

dk

WW

t

t

∝ (VtkV ∗
ti)

2

• The meson-antimeson amplitude can be written as:

M M̄

M12 −
i

2
Γ12

Dominated by
long distance effects

Dominated
by perturbative physics

13
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K mixing (      )

• Mass and CP eigenstates are different:

KL ∼ K2 + ε̄K1KS ∼ K1 + ε̄K2

• KL can decay into the CP even (ππ)I=0 final state 
through its tiny K1 component:

εK =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

KL ∼ K2 + ε̄K1

ππindirect (  )

direct (   )

ε

ε′
ππ

14

εK
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• Critical inputs:

     from lattice QCD

       from inclusive and exclusive               decays

    in the SM from                    and lattice QCD

15

εK =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

= eiφεsinφε

(
ImMK

12

∆MK
+

ImA0

ReA0

)

= eiφεκεCεB̂K |Vcb|
2λ2η

(
|Vcb|

2(1− ρ̄) + ηttS0(xt)

+ηctS0(xc, xt)− ηccxc

)

B̂K

|Vcb| b→ c!ν

κε (ε′
K/εK)exp

K mixing (      )εK

ΓK
12
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• Experimentally one has:

• ImA0/ReA0 can be extracted from experimental data on ε’/ε 
and theoretical calculation of isospin breaking corrections:

  

 

• Combining everything:

16

|εK | = κεCεB̂K |Vcb|
2λ2η

(
|Vcb|

2(1− ρ̄) + ηttS0(xt) + ηctS0(xc, xt)− ηccxc

)

φε = (43.51± 0.05)o

Re(ε′
K/εK)exp ∼

ω√
2|εK |

(
ImA2

ReA2
− ImA0

ReA0

)

[RBC/UK-QCD]
1st unquenched attempt!

[PDG]

K mixing (      )εK

κε = 0.92± 0.01 [Laiho,EL,Van de Water]

ImA2 = (−7.9± 4.2)× 10−13 GeV
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• Alternative calculations of 

Large Nc + some quenched lattice results: 

Quenched lattice QCD:

17

K mixing (      )εK

κε

[Andryiash,Ovanesyan,Vysotsky;
Nierste; Buras,Jamin; 
Bardeen,Buras,Gerard; 
Buras,Guadagnoli]

Quenched ImA2 × 1013 GeV

RBC ’01 [51] −12.6

CP-PACS ’01 [52] −9.1

SPQCDR ’04 [53] −5.5

Babich et al ’06 [54] −9.2

Yamazaki ’08 [55] −11.8

Average −9.6

TABLE VIII: Quenched lattice values for ImA2.

φε = (43.51 ± 0.05)◦ |εK | = (2.229 ± 0.012)× 10−3

ω = 0.0450 Re(ε′K/εK) = 1.68 ± 0.19× 10−3

ReA2 = 1.50× 10−8 GeV ImA2 = (−7.9 ± 4.2)× 10−13 GeV

TABLE IX: Inputs used to determine κε.

the error in κε. We note for comparison that if we use the average quenched value of ImA2,

assigning to it a 100% error, we find κε = 0.92 ± 0.02.

F. fK

The kaon decay constant fK enters the CKM unitarity triangle through εK . Because

experiments can only measure the product fK × |Vus|, lattice calculations are needed to

obtain fK by itself. There have already been four 2+1 flavor lattice QCD determinations of

fK using different valence and sea quark actions, and several more calculations are underway.

Thus fK is one of the best-known hadronic weak matrix elements. Table X summarizes the

current status of 2+1 flavor lattice QCD calculations of fK .

The MILC Collaboration published the first 2+1 flavor determination of fK in 2004 [61],

and updated the result at Lattice 2007 by including data with lighter quarks and finer lattice

spacings [57]. The largest source of uncertainty in their calculation is from the extrapolation

to the physical light quark masses and the continuum. A small but non-negligible error also

arises due to the determination of the absolute lattice scale needed to convert dimensionful

17

±9.6

κε = 0.92± 0.02

κε = 0.92± 0.02

very conservative

Excellent consistency
of all determinations

[Laiho,EL,Van de Water]
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K mixing (      )εK

• Buras, Guadagnoli & Isidori pointed out that also        
receives non-local corrections with two insertions of the 
ΔS=1 Lagrangian:

MK
12

u, c
s

d

d

s

K0 K0

u, cs

d

d

s

K0 K0

Figure 1: Contractions of the leading |∆S| = 1 four-quark effective operators contributing to M12 at
O(G2

F ).

diagrams in Fig. 1. In other words, the leading order result is obtained with the following substitutions
in Eq. (11):

ImM12 → ImM (6)
12 = ImMSD

12 and ξ → 0 . (15)

Going one step forward requires taking into account:

1. non-local contributions to both ImM12 and ImΓ12 generated by the O(GF ) dimension-six∆S = 1
operators,

2. local contributions to ImM12 generated by dimension-eight ∆S = 2 operators of O(G2
F ).

The structure of the subleading terms in ImM12 is very similar to the O(G2
F ) long-distance contribu-

tions to K → πνν̄, discussed in Ref. [11]. The relevant effective Hamiltonian changes substantially
if we choose a renormalization scale above or below the charm mass. Keeping the charm as explicit
degree of freedom, dimension-eight operators are safely negligible and the key quantity to evaluate is

T12 = −i

∫
d4x〈K0|T

[
H(u,c)

|∆S|=1(x)H
(u,c)
|∆S|=1(0)

]
|K̄0〉 , (16)

where the superscript in H(u,c)
∆S=1 denotes that the we have two dynamical up-type quarks. The ab-

sorptive part of T12 contributes to Γ12, while the dispersive part contributes to M12. In the latter case
the leading term in the expansion in local operators should be subtracted, being already included in

ImM (6)
12 . In principle, extracting the subleading contribution to ImM12 directly from Eq. (16) is the

best strategy: the result would be automatically scale independent. However, in practice this is far
from being trivial also on the lattice, given the disconnected diagrams in Fig. 1.

Following a purely analytical approach, we can integrate out the charm and renormalize H∆S=1

below the charm mass. This allows to identify ξ with the weak phase of the A0 amplitude, that, as
mentioned, has already been estimated in Ref. [5] (see also [12]). On the other hand, ImM12 assumes
the form

ImM12 = ImMSD
12 + ImMLD

12 , ImMLD
12 = ImMnon−local

12 + ImM (8)
12 , (17)

where ImMnon−local
12 and ImM (8)

12 are not separately scale independent. The structure of the dimension-
eight operators obtained integrating out the charm, and an estimate of their impact on εK , has been

presented in Ref. [13]. According to this estimate, ImM (8)
12 is less than 1% of the leading term.

The smallness of ImM (8)
12 can be understood by the following dimensional argument. First, it should

be noted that the CKM suppression of the dimension-eight operators is (V ∗
csVcd)2, namely the same

CKM factor of the genuine charm contribution in H(6)
∆S=2. Second, even if we are not able to precisely

evaluate the hadronic matrix elements of the dimension-eight operators, we expect

〈K̄0|Q(8)
i |K0〉 = O(1)×m2

K × 〈K̄0|Q(6)|K0〉 . (18)

According to this scaling, the contribution of ImM (8)
12 is an O(m2

K/m2
c ≈ 15%) correction of the

charm contribution (charm-charm loops) to ImM (6)
12 , which itself is a O(15%) correction of the total

4

• Using CHPT they obtain a conservative estimate of these  
xxxxxxxxxxxxxeffects. Combining the latter with our 
xxxxxxxxxxxxxdetermination of ImA0 we obtain:

[Laiho,EL,Van de Water;

-6% !

κε = 0.94± 0.017
Buras, Guadagnoli, Isidori]

K0 K0π0, η (η′) K0 K0π

π

Figure 2: Tree-level and one-loop diagrams contributing to K̄0–K0 mixing in CHPT.

and F can be identified with the pion decay constant (F ≈ 92MeV). The effective coupling G8 can
be determined by K → 2π amplitudes. Neglecting the (27L, 1R) operator and evaluating the K → 2π
amplitudes at tree level leads to

A0 = A(K0 → (2π)I=0) =
√
2FG8(m

2
K −m2

π) , (25)

which implies |G8| ≈ 9× 10−6 (GeV)−2. As far as the weak phase of G8 is concerned, at this level of
accuracy we have Im(G8)/Re(G8) = ξ.

In principle L(2)
|∆S|=1 could contribute to M12 already at O(p2), via the tree-level diagram in Fig. 2

(left). However, considering the O(p2) relation among π0, η and kaon masses (i.e. the Gell-Mann
Okubo mass formula), this contribution vanishes [14]. As a result, the first non-vanishing contribution

to M12 generated by L(2)
|∆S|=1 arises only at O(p4).

At O(p4) we should evaluate loop amplitudes with two insertions of L(2)
|∆S|=1 and tree-level diagrams

with the insertion of appropriate O(p4) counterterms. Among all these O(p4) contributions, the only
model-independent, and presumably dominant, contribution to M12 is the non-analytic one generated
by the pion-loop amplitude in Fig. 2 (right),

T (ππ)
12 = A(ππ)(K̄0 → K0) = − 3

16π2
F 2(G∗

8)
2(m2

K −m2
π)

2 ×

×
[
√

1− 4r2π

(
log

1 +
√

1− 4r2π
1−

√
1− 4r2π

− iπ

)
+ log

(
m2

π

µ2

)]
, (26)

with r2π = m2
π/m

2
K and where we have absorbed all finite (mass-independent) terms in the definition

of the renormalization scale µ. This is the only contribution which has an absorptive part. As a
consequence, its weak phase can be unambiguously related to the weak phase of the K0 → (2π)I=0

amplitude to all orders in the chiral expansion. In addition, it is the only contribution that survives
in the limit of SU(2)L × SU(2)R CHPT, which is known to represent a good approximation of the
full O(p4) amplitude in several K-decay observables where contributions from counterterms are fully
under control (see e.g. Ref. [15]).

A CHPT calculation of M12 complete to O(p4) would require consideration of loops involving kaons
and η’s, as well as O(p4) local counterterms. However, all these additional pieces are not associated
with any physical cut. As such, they can effectively be treated as a local term whose overall weak
phase cannot be related to the phase of the K0 → (2π)I=0 amplitude.2 On account of the above
considerations,3 we refrain from a full O(p4) CHPT calculation, and we focus on the pion-loop non-

analytic contribution only. Using the relation T (ππ)
12 = 2mKM (ππ)

12 (µ), the result in Eq. (26) implies

M (ππ)
12 (µ) = − 3

64π2mK
(A∗

0)
2

[
log

(
m2

K

µ2

)
+O

(
m2

π

m2
K

)]
. (27)

The absorptive part in Eq. (26) is nothing but the leading |(2π)I=0〉 contribution to Γ12, which gives
rise to the relation (10). The dispersive part is the dominant contribution to M12 in the leading-log

2For a recent, elucidating discussion about the role of kaon loops in CHPT, see [16].
3The authors warmly acknowledge Jean-Marc Gérard for triggering a discussion on this point.
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• Note the quartic dependence on Vcb: |Vcb|4~A4 λ8 

• Critical input from lattice QCD

19

|εK | = κεCεB̂K |Vcb|
2λ2η

(
|Vcb|

2(1− ρ̄) + ηttS0(xt) + ηctS0(xc, xt)− ηccxc

)

〈K0|OV V +AA(µ)|K̄0〉 =
8
3
f2

KM2
KBK(µ)

K mixing (      )εK

B̂K (δB̂K)stat (δB̂K)syst

HPQCD/UKQCD ’06 [17] 0.83 0.02 0.18

RBC/UKQCD ’07 [18] 0.720 0.013 0.037

Aubin, Laiho & Van de Water ’09 [19] 0.724 0.008 0.028

Average 0.725± 0.026

TABLE I: Unquenched lattice QCD determinations of the neutral kaon mixing parameter B̂K . A

plot showing the three Nf = 2 + 1 results and their average is given in Fig. 5.

taken into account when averaging lattice inputs to be used in the CKM unitarity triangle

analysis.

In this section, we average the latest lattice QCD results and provide values that should be

used in current fits of the CKM unitarity triangle. In the averages, we only include results

from simulations with three dynamical quark flavors, and with associated proceedings or

publications that include comprehensive error budgets. Fortunately, for all quantities of

interest, there is at least one calculation that satisfies these critera. In taking the averages

we assume that all errors are normally distributed and follow the prescription outlined in

Ref. [16] to take the correlations into account. The degree of correlation induced by a given

source of uncertainty onto the errors of different lattice calculations is extremely difficult

to estimate. In order to be conservative, whenever there are arguments that suggest some

correlation between errors in distinct lattice results, we take it to be 100%. Finally, we adopt

the PDG prescription to combine several measurements whose spread is wider than what

expected from the quoted errors: the error on the average is increased by the square root of

the minimum of the chi-square per degree of freedom (constructed following Ref. [16]).

A. BK

The experimental measurement of indirect CP-violation in the kaon sector, εK , when

combined with a nonperturbative determination of the neutral kaon mixing parameter, BK ,

places a constraint on the apex of the unitarity triangle. There have been three realistic

lattice QCD calculations of BK since 2006; the results are summarized in Table I.

The first, by the HPQCD and UKQCD Collaborations [17], uses the “2+1” flavor asqtad-

5

2+1 DW fermions

2+1 DW valence fermions 
and 2+1 staggered sea 
configurations

B̂K = 0.725± 0.026
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• Error budget:

20

|εK | = κεCεB̂K |Vcb|
2λ2η

(
|Vcb|

2(1− ρ̄) + ηttS0(xt) + ηctS0(xc, xt)− ηccxc

)

!1.0 !0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ρ

Η

Vcb only

BK only

All other uncertainties
have negligible impact 
on the combined error

Central value of κε is 
important

[Laiho,EL,van de Water]

K mixing (      )εK
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• Ratio of the Bs and Bd mass differences:

Bq mixing

21

• No dependence on Vcb

∆MBs

∆MBd

=
mBs

mBd

B̂sf2
Bs

B̂df2
Bd

∣∣∣∣
Vts

Vtd

∣∣∣∣
2

=
mBs

mBd

ξ2

∣∣∣∣
Vts

Vtd

∣∣∣∣
2

• Two unquenched determinations:

FNAL/MILC: 

HPQCD:  

ξ = 1.205± 0.036± 0.037
ξ = 1.258± 0.025± 0.021

• Average: ξ = 1.243± 0.034
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• In the fit we utilize only ξ and        

Bq mixing

22

fBs

√
Bs

• There is only one unquenched determination of the Bs 
matrix element from HPQCD but there are two 
determinations of fBs (FNAL/MILC and HPQCD):

fB(MeV) (δfB)stat (δfB)syst

FNAL/MILC ’08 [28] 195 7 9

HPQCD ’09 [29] 190 7 11

Average 192.8± 9.9

fBs(MeV) (δfBs)stat (δfBs)syst

FNAL/MILC ’08 [28] 243 6 9

HPQCD ’09 [29] 231 5 14

Average 238.8± 9.5

TABLE II: Unquenched lattice QCD determinations of the B-meson decay constants fB and fBs .

Plots showing the Nf = 2 + 1 results and their averages are given in Figs. 6 and 7.

— the light-quark discretization error and chiral extrapolation, heavy-quark discretization

error, and scale and light-quark mass determination — all lead to comparable errors of ∼

2%.

The HPQCD Collaboration recently published a determination of fB and fBs [29] using

staggered light quarks and NRQCD b-quarks [31]. The statistical plus chiral extrapolation

errors are comparable to those of Fermilab/MILC. The largest systematic errors, however,

are from the continuum extrapolation (∼ 3%) and operator matching (∼ 4%).

Because both decay constant calculations rely upon the MILC gauge configurations, in-

cluding many overlapping ensembles, we treat the statistical errors as 100% correlated be-

tween the two calculations. Most of the systematic errors in the two calculations, however,

such as those from tuning the quark masses, heavy-quark discretization effects, and operator

matching, are independent, so we treat the systematic errors as uncorrelated. Given these

assumptions, we obtain the weighted averages

fB = 192.8± 9.9 (2)

fBs = 238.8± 9.5. (3)

In practice, the CKMfitter and UTfit Collaborations do not in fact, use the B-meson decay

constant to implement the unitarity triangle constraint from B → τν decay. Instead, they

construct the ratio B.R.(B → τν)/∆md, where ∆md is the Bd-meson oscillation frequency,

to reduce the uncertainty from hadronic matrix elements. The quantity f 2
B cancels in this

8

B̂Bd B̂Bs

HPQCD ’09 [29] 1.26± 0.11 1.33± 0.06

TABLE III: Unquenched lattice QCD determinations of the neutral B-meson bag parameters B̂Bq .

ratio, such that the ratio depends only on the B-meson bag parameter, BBd
, which currently

has a smaller relative uncertainty than f 2
B. Currently there is only one available 2+1 flavor

calculation of the neutral B-meson bag parameters by the HPQCD Collaboration [29]. They

use the same lattice actions and analysis methods as for the decay constants, and obtain

BBd
= 1.26± 0.11 (4)

BBs = 1.33± 0.06. (5)

These results are also presented in Table III.

The experimental measurements of the Bd- and Bs-meson oscillation frequencies, when

combined with a calculation of the neutral B-meson mixing matrix elements, place additional

constraints on the apex of the CKM unitarity triangle. The weaker of the two constraints

comes from ∆md, which is proportional to the hadronic matrix element fBd

√
B̂Bd

. Nev-

ertheless, this constraint plays an important role in the search for new physics because,

depending upon the type of physics beyond the Standard Model (BSM) that is present, new

physics may affect Bs- and Bd-mixing independently. For example, in some minimal flavor

violating scenarios, new physics will alter the separate constraints on the apex of the CKM

unitarity triangle from Bs- and Bd-mixing, but not the constraint from their ratio.

Although there has been only one 2+1 flavor calculation of the neutral B-meson mixing

matrix elements by the HPQCD Collaboration [29], there have been two calculations of the

decay constant fB, as discussed earlier in this section. We can therefore use the average

values of fB and fBs to improve the lattice determinations of the mixing matrix elements

fBd

√
B̂Bd

and fBs

√
B̂Bs . We do so by combining the average value of fB in Table II

with the HPQCD determination of BBd
in Table III. This procedure reduces the errors

in the mixing matrix element to below that from the HPQCD calculation alone, thereby

improving the resulting constraint on the unitarity triangle. We add the errors of fB and

BBd
in quadrature, despite the fact that the average fB value contains information from the

9

+ } fB = (192.8± 9.9) MeV

fBs

√
Bs = (275± 13) MeV

HPQCD alone finds (266 ± 18) MeV
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Three types of CP violation

• Mixing (mass and CP eigenstates are different)

• Decay

• Interference in decays with and without mixing

Γ(B̄0
phys(t)→ !+νX) "= Γ(B0

phys(t)→ !−ν̄X)

Γ(B+ → f+) "= Γ(B− → f−)

Γ(B̄0
phys(t)→ fCP ) "= Γ(B0

phys(t)→ fCP )

23
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Time dependent CP asymmetry in 

• Penguin polluting effects are CKM (10-2) and loop 
suppressed:

b
c

c

s

b t s

c

c

VcbV
∗
cs VtbV

∗
ts = −VcbV

∗
cs − VubV

∗
us

• It is a clean measurement of the Bd mixing phase 
(assuming no NP corrections to the Tree amplitude):

24

B → J/ψKS
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• No tree-level contribution

• There is no loop suppression of the sub-dominant 
CKM combination: uncertainty is (1-10)%

• Analyses in the framework of QCD factorization 
(SCET) and PQCD conclude that some modes 
should be very clean:

A = (P c − P t)VcbV
∗
cs + (Pu − P t)VubV

∗
us

25

Time dependent CP asymmetry in b→ ss̄s

B → φKS
B → η′KS
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b
→

ss̄
s {

[HFAG 2009]

0.025{
• We will consider the asymmetries in the                 modesJ/ψ, φ, η′

• A case can be made for the               final stateKsKsKs

[Beneke,Neubert]

In QCDF:

[Cheng,Chua,Soni]

arg(V ∗
td)

Other approaches find similar results
[Chen,Chua,Soni; Buchalla,Hiller,Nir,Raz]

[EL, Soni]
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Time dependent CP asymmetry in b→ qq̄s

SψKs = sin 2(β + θd) + O(0.1%)

∆Sf ≡ Sf − sin 2(β + θd)

= 2
∣∣∣∣
VubV

∗
us

VcbV
∗
cs

∣∣∣∣ cos 2β sin γ Re

(
au

f

ac
f

)

∆Sφ = 0.03± 0.01
∆Sη′ = 0.01± 0.025



Enrico Lunghi

The role of Vub and Vcb

27

exclusive Vcb and Vub

inclusive Vcb and Vub

• Inclusive and exclusive 
determinations of  Vcb and Vub 
are about 2σ apart

• Vcb is quite essential to establish 
the presence of NP in the UT

• Vub is measured at tree-level 
and is not sensitive to NP. Its 
value is important to distinguish 
between NP in K or B mixing
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CKM Workthop, Rome Sept 2008      Phillip Urquijo 22

How Things Mesh Together

Inclusive
b ! ulv

q2

b!s"

Shape
Function

E"

mb

Inclusive b ! clv

m
X

E
l

HQE Fit

mX

El

WA

duality

|Vub|

SSFs

|Vcb|

AKA: M. Morii’s HQE plumbing diagram

22

Interplay between b→sγ,  Vcb and Vub

[Phillip Urquijo]
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 + X! l c  X

HFAG

ICHEP08

Vcb
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• Exclusive from B→D(*)lν. Using form factor from lattice 
QCD (2+1 dynamical staggered fermions) one finds:

• Inclusive from global fit of B→Xclν moments.

[FNAL/MILC]

[Büchmuller,Flächer]

Inclusion of b→sγ has strong impact 
on quark masses but not on Vcb 
NNLO in αs and O(1/mb4) known
Calculation of O(αs/mb2) under way 
Issue of mb is relevant for Vub

2σ discrepancy between 
inclusive and exclusive

|Vcb| = (38.6 ± 1.2)× 10−3

[exp. error on B→D* rescaled to account for the large χ2/dof = 39/21]
[average:Laiho,EL,Van de Water]

|Vcb| = (41.31 ± 0.76)× 10−3
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Vub

30

• Exclusive from B→πlν. Using form factor from lattice QCD 
(2+1 dynamical staggered fermions) one finds:

• Inclusive from global fit of B→Xulν moments.

[HPQCD, FNAL/MILC]

[Gambino,Giordano,Ossola,
Uraltsev (GGOU)]

[Andersen,Gardi (DGE)]

[Bosch,Lange,Neubert,Paz 
(BLNP)]

1.3σ discrepancy between inclusive and exclusive

|Vub| =
(
4.03 ± 0.15exp

+0.20
−0.25th

)
10−3

|Vub| =
(
4.25 ± 0.15exp

+0.21
−0.17th

)
10−3

|Vub| =
(
4.06 ± 0.15exp

+0.25
−0.27th

)
10−3

|Vub| = (4.87 ± 0.24exp ± 0.38th) 10−3 [Bauer,Ligeti,Luke (BLL)]

|Vub| = (3.42 ± 0.37)× 10−3
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Trouble with Vub inclusive

31

• It is really not an inclusive determination: cuts eliminate vast 
majority of the phase space

• Very strong dependence on mb (higher mb ⇒ lower Vub)
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32

B → τν

BR(B → τν) =
G2

F m2
τmB+

8πΓB+

(
1−m2

τ/m2
B+

)2
f2

B |Vub|2

fB = (192.8± 9.9) MeV• Only lattice input:

• Babar and Belle published measurements using semileptonic and hadronic 
tags (to reconstruct the recoiling B meson):

BR(B → τν)exp = (1.74± 0.37)× 10−6

[Note that both HFAG09 and PDG09 do not include the most up-to-date
BaBar semileptonic tag analysis and present (1.43±0.37) x 10-6]

• In NP models with a charged Higgs (2HDM, MSSM,..):

BR(B → τν)NP = BR(B → τν)SM

(
1−

tan2 β m2
B+

m2
H+(1 + ε0 tanβ)

)2

︸ ︷︷ ︸
rH
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Inputs to the fit: summary

33

B̂K = 0.725± 0.026 |Vcb|excl = (38.6 ± 1.2)× 10−3

|Vub|excl = (34.2 ± 3.7)× 10−4

|Vcb|incl = (41.31 ± 0.76)× 10−3

∆mBd = (0.507± 0.005) ps−1 ∆mBs = (17.77± 0.10± 0.07) ps−1

α = (88.7± 4.7)o γ = (78± 12)o

η1 = 1.51± 0.24 mt,pole = (172.4± 1.2) GeV

η2 = 0.5765± 0.0065 mc(mc) = (1.268± 0.009) GeV

η3 = 0.47± 0.04 εK = (2.229± 0.012)× 10−3

ηB = 0.551± 0.007 λ = 0.2255± 0.0007

SψKS = 0.672± 0.024 fK = (155.8± 1.7) MeV

fBs

√
B̂s = (275± 13) MeV

}(40.3± 1.0)× 10−3

}
κε = 0.94± 0.017

ξ = 1.243± 0.034

|Vub|incl = (40.1 ± 2.7 ± 4.0)× 10−4
(36.4± 3.0)× 10−4

|Vcb|incl = (41.31 ± 0.76)× 10−3 [34] |Vub|incl = (40.3 ± 1.5+2.0
−2.5)× 10−4 [34]

∆mBd = (0.507 ± 0.005) ps−1 [71] ∆mBs = (17.77 ± 0.10 ± 0.07) ps−1 [72]

α = (89.5 ± 4.3)o γ = (78 ± 12)o [67, 68]

η1 = 1.51 ± 0.24 [73] mt,pole = (172.4 ± 1.2) GeV [74]

η2 = 0.5765 ± 0.0065 [75] mc(mc) = (1.268 ± 0.009) GeV [76]

η3 = 0.47 ± 0.04 [77] εK = (2.229 ± 0.012)× 10−3 [70]

ηB = 0.551 ± 0.007 [78] λ = 0.2255 ± 0.0007 [79]

SψKS = 0.672 ± 0.024 [66]

TABLE XI: Inputs used in the unitarity triangle fit. Note that the most precise determination of

mc is obtained from lattice QCD [76].

between the errors of the two exclusive determinations of |Vcb| and assuming no correlation

between inclusive and exclusive analyses, we obtain:

|Vcb|excl+incl = (40.3 ± 1.0)× 10−3 , (20)

where the error has been appropriately rescaled following the PDG prescription. We quote

the inclusive determination of |Vub| from the most recent GGOU analysis [34, 69]. Be-

cause, however, the extraction of |Vub|incl depends strongly on the theoretical framework

adopted [34], we adopt a conservative stance and omit |Vub|incl from the set of measurements

that we include in the full unitarity triangle fit. Our predictions for the Standard Model

parameters in the following section are independent of |Vub|, and our conclusions regarding

indications of new physics in Sec. V are relatively insensitive to the value of |Vub|. Apart

from the inputs listed in Table XI, we take GF , mK , mW , mBd
and mBs from the Particle

Data Group [70].

IV. STANDARD MODEL PREDICTIONS

In this section we extract the Standard Model predictions for B̂K , |Vcb| and |Vub/Vcb|.

We use only the three constraints from SψKS , ∆MBs/∆MBd
and εK , and do not include

the constraints from |Vub|, α and γ in the fit because predictions are almost completely

insensitive to their impact. The analytical formulae for εK and ∆MBs/∆MBd
can be found,

20
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Current fit to the unitarity triangle

34

[sin 2β]fit = 0.774± 0.035 ⇒ 2.4 σ

[BR(B → τν]fit = (0.85± 0.11)× 10−4 ⇒ 2.4 σ

[B̂K ]fit = 0.895± 0.090 ⇒ 1.8 σ
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• The tension in the UT fit can be interpreted as evidence for new 
physics contributions to       and to the phases of Bd mixing and 
of            amplitudes:

35

Model Independent Interpretation

• This implies: 

• In general NP will affect in different ways the various          channels

b→ s

b→ s

εK

εK = εSM
K Cε

M12 = MSM
12 e2iφd r2

d

A(b→ ss̄s) = [A(b→ ss̄s)]SM eiθA

aψKs = sin 2(β + φd)
sin 2αeff = sin 2(α− φd)

∆MBd = (∆MBd)SM r2
d

a(φ,η′)Ks
= sin 2(β + φd + θA)
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Model Independent Interpretation

• NP in K mixing:

• NP in B mixing:

• NP in B→τν:

Slightly favored

Difficult to reconcile with 
a charged Higgs effect
(but... see new BaBar results)

(θd)fit =






−(4.4 ± 1.8)o (2.4σ, p = 37%) |Vcb|tot
−(6.0 ± 1.9)o (3.1σ, p = 27%) |Vcb|excl

−(3.4 ± 1.7)o (2.2σ, p = 35%) |Vcb|incl

(Cε)fit =






1.24 ± 0.13 (1.8σ, p = 18%) |Vcb|tot
1.36 ± 0.15 (2.3σ, p = 11%) |Vcb|excl

1.15 ± 0.11 (1.4σ, p = 20%) |Vcb|incl

(rH)fit =






2.06 ± 0.48 (2.2σ, p = 35%) |Vcb|tot
2.05 ± 0.48 (2.2σ, p = 6%) |Vcb|excl

2.07 ± 0.48 (2.2σ, p = 58%) |Vcb|incl
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• Vub is the most controversial input to the fit  

Removing Vub

37

[BR(B → τν]fit = (0.85± 0.11)× 10−4 ⇒ 2.4 σ

[sin 2β]fit = 0.774± 0.035 ⇒ 3.2 σ

[B̂K ]fit = 0.902± 0.091 ⇒ 1.9 σ
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Removing Vub : Model Independent Interpretation

• NP in K mixing:

• NP in B mixing:

• NP in B→τν:

Favored(θd)fit = −(10.0± 3.4)o =⇒ (2.9σ, 82%)

(Cε)fit = 1.25± 0.13 =⇒ (1.8σ, 18%)

(rH)fit = 2.09± 0.49 =⇒ (2.2σ, 27%)

★Non trivial agreement between εK, B→τν, γ and ΔMs/ΔMd 
favors scenarios with NP in Bd mixing.

Difficult to reconcile with 
a charged Higgs effect
(but... see new BaBar results)
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Removing B→τν (but why?)

FIG. 4: Full fit to the unitarity triangle. Upper left panel: The black contour is obtained without

the inclusion of the εK constraint. Upper right panel: The black contour is obtained without the

inclusion of the α and β constraints. Lower panel: The black contour is obtained without the

inclusion of the ∆MBd constraint.

of hadronic weak matrix elements are therefore appropriate for use in phenomenological

analyses such as the global CKM unitarity triangle fit.

When these up-to-date lattice averages of the hadronic weak matrix elements are used in

a global fit of the CKM unitarity triangle, we find a (2–3)σ tension. The significance of the

tension depends upon whether we use the exclusive or inclusive determination of |Vcb|, which

disagree by ∼ 2σ. If we assume that new physics does not affect tree-level processes at the

current level of precision, this tension can be interpreted as a sign of new physics either in

neutral kaon mixing or in neutral B-meson mixing. We find that the current data prefer

the scenario in which the new physics is in kaon mixing; this can be seen by the fact that

the confidence level of the global fit increases significantly when we remove the constraint

from the εK band leaving all others unchanged. The tension between the εK band and the

other constraints is enhanced by our inclusion of the correction factor κε, which lowers the

Standard Model prediction for εK by 8%. This factor has been recently included by the
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• The use of  Vcb seems to be necessary in order to use K 
mixing to constrain the UT:

Removing Vub and Vcb ?

|εK | = 2χεB̂Kκε ηλ6
(
A4λ4(ρ− 1)η2S0(xt) + A2

(
η3S0(xc, xt)− η1S0(xc)

))
∆MBs = χs f2

Bs
B̂BsA

2λ4

BR(B → τν) = χτf2
BA2λ6(ρ2 + η2)

|εK | ∝ B̂K (fBsB̂
1/2
s )−4 f(ρ, η)

|εK | ∝ B̂K BR(B → τν)2 f−4
B g(ρ, η)

• The interplay of these constraints allows to drop Vcb while 
still constraining new physics in K mixing:
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• The use of  Vcb seems to be necessary in order to use K 
mixing to constrain the UT:

Removing Vcb !

ρ-η topology of the
constraint makes it 
relevant despite large 
errors on B→τν

X : B̂K |Vcb| fBsB̂
1/2
s BR(B → τν) fB

δX : 3.7% 2.5% 4.7% 21% 5%
δεK : 3.7% 10% 18.9% 42% 20%
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• The use of  Vcb seems to be necessary in order to use K 
mixing to constrain the UT:

Removing Vcb !

|εNP
K | = Cε |εSM

K |
Md,NP

12 = eiθd Md,SM
12

BR(B → τν)NP = rH BR(B → τν)SM

C
noVqb
ε = 1.21± 0.22 ⇒ (1.0σ, p = 8%)

θ
noVqb

d = −(11.4± 2.7)o ⇒ (2.7σ, p = 85%)

r
noVqb

H = 2.1± 0.5 ⇒ (2.2σ, p = 50%)
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• Even modest improvements on B→τν have tremendous impact on the UT fit: 
L = 10(50)ab-1  →  δτ = 10(3)%

SuperB expectations...

δs = δ(fBs

√
Bs)δτ = δBR(B → τν)

δτ δs pSM θd ± δθd pθd θd/δθd
∗20% ∗4.6% 5% −(11.4± 4.2)o 85% 2.7σ
∗20% 2.5% 1.1% −(11.2± 3.7)o 85% 3.1σ
∗20% 1% 0.08% −(11.0± 3.1)o 85% 3.5σ

10% ∗4.6% 0.03% −(12.2± 3.0)o 84% 4.1σ
3% ∗4.6% 10−5% −(12.5± 2.4)o 84% 5.2σ

10% 2.5% 0.005% −(11.9± 2.7)o 83% 4.4σ
10% 1% 0.0003% −(11.7± 2.5)o 82% 4.7σ
3% 2.5% 10−6% −(12.3± 2.2)o 82% 5.5σ
3% 1% 4× 10−8% −(12.0± 2.0)o 81% 5.9σ

• Interplay between Bs mixing and B→τν can result in a  > 5σ effect

• The fit is completely clean
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Operator Level Analysis: Mixing

• Effective Hamiltonian for Bd mixing: 

Heff =
G2

F m2
W

16π2
(VtbV

∗
td)

2

(
5∑

i=1

CiOi +
3∑

i=1

C̃iÕi

)

O1 =
(
d̄LγµbL

) (
d̄LγµbL

)
Õ1 =

(
d̄RγµbR

) (
d̄RγµbR

)

O2 =
(
d̄RbL

) (
d̄RbL

)
Õ2 =

(
d̄LbR

) (
d̄LbR

)

O3 =
(
d̄α

Rbβ
L

) (
d̄β

Rbα
L

)
Õ3 =

(
d̄α

Lbβ
R

) (
d̄β

Lbα
R

)

O4 =
(
d̄RbL

) (
d̄LbR

)
O5 =

(
d̄α

Rbβ
L

) (
d̄β

Lbα
R

)
.

• Bs mixing (d→s), K mixing (b→s & s→d)

• Parametrization of New Physics effects:

Retain loop and CKM suppression

δC
Bq,K
1,4 (µ0) = − 1

G2
F m2

W

eiϕ

Λ2
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• The contribution of the LR operator O4 to K mixing is strongly 
enhanced (                              ):

C1(µL)〈K|O1(µL)|K〉 # 0.8 C1(µH)
1
3
f2

KmKB1(µL)

C4(µL)〈K|O4(µL)|K〉 # 3.7 C4(µH)
1
4

(
mK

ms(µL) + md(µL)

)2

f2
KmKB4(µL)

µL ∼ 2 GeV , µH ∼ mt

• No analogous enhancement in Bq mixing 

running from μH to μL chiral enhancement

C4(µL)〈K|O4(µL)|K〉
C1(µL)〈K|O1(µL)|K〉 # (65 ± 14)

B4(µL)
B1(µL)

C4(µH)
C1(µH)

Operator Level Analysis: Mixing

O(1)
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Operator Level Analysis: Bd Mixing

• New Physics in Bd mixing only: 

• Effects on         and

δCBs
1 = δCK

1 = 0

aψK ∆MBs/∆MBd

• Lower limit on Λ induced by ∆MBs/∆MBd

∆C1
Bd"#

1
GF
2 mW

2
ei$

%2

without Vub

with Vub

500 1000 1500 2000 2500
0

20

40

60

80

100

120

% !GeV"

$ !O" Λ ∼ [1.1÷ 2.3] TeV
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Operator Level Analysis: K Mixing

• New Physics in K mixing only: δCBs
1 = δCBd

1 = 0

∆C4
K"#

1
GF
2 mW

2

ei$

%2
without Vub

with Vub

5 10 15 20 25 30

150

200

250

300

350

% !TeV"

$ !O"

∆C1
K"#

1
GF
2 mW

2

ei$

%2
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with Vub

500 1000 1500 2000 2500

150

200

250

300

350

% !GeV"

$ !O"

Λ ∼ [1.1÷ 1.9] TeV Λ ∼ [14÷ 24] TeV
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• Proper treatment of new physics effects in penguin amplitudes 
is better implemented with NP contributions to the QCD and 
EW penguin operators

• Correlation between the              and Kπ asymmetries: 

NP in penguin amplitudes

48

b→ ss̄s

• Possible issue with large color suppressed contributions to 
the           final state  K−π0

• QCDF result very stable under variation of all the inputs

ACP (B− → K−π0)−ACP (B̄0 → K−π+) =
{ (14.8± 2.8) % exp

(2.2± 2.4) % QCDF
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CP asymmetries in B→Kπ

• Amplitudes in QCD factorization:

b

s

q q

u
u
π+0

K-

B0-
b

q

s

u

u

qπ
+0

K-

B0-

b

u

u

u

u
s

B-

π0

K-

←color suppressed
[Gronau,Rosner]
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T

C
PEW

P

b

u

u

s
q

q

B-

π0

K-

• We get: P

T
! 0.20,

C

T
! 0.16,

PEW

T
! 0.47

fits yield C/T ~ 0.6

AB̄0→π+K− = AπK̄

∑

q=u,c

VqbV
∗
qs [δquα1 + α̂q

4]

√
2AB−→π0K− = AB̄0→π+K− + AK̄π

∑

q=u,c

VqbV
∗
qs

[
δquα2 + δqc

3
2
αc

3,EW

]
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CP asymmetries in B→Kπ

• In QCDF:

50

ACP (B− → K−π0)−ACP (B̄0 → K−π+) = (2.2± 2.4) %

• Dominant sources of uncertainties
light-cone wave function parameters:                       

end-point singularities: 

αK
1 , αK

2 , απ
2 , λB

XH =
(
1 + ρH eiϕH

)
log

mB

Λ
XA =

(
1 + ρA eiϕA

)
log

mB

Λ

ρH , ϕH , ρA, ϕA

Figure 5: Hard spectator-scattering contribution to the coefficients ap
i . The

meaning of the external lines is the same as in Figure 2, but the spectator-quark
line is now included in the drawing.

if M2 is a pseudoscalar meson, and

P p
6 (M2) = −

CFαs

4πNc

{

C1 ĜM2(sp) + C3

[
ĜM2(0) + ĜM2(1)

]

+ (C4 + C6)
[
(nf − 2) ĜM2(0) + ĜM2(sc) + ĜM2(1)

] }

(42)

if M2 is a vector meson. In analogy with (40), the function ĜM2(s) is defined as

ĜM2(s) =

∫ 1

0

dxG(s − iε, 1 − x) Φm2(x) . (43)

As mentioned above we take into account electromagnetic corrections only for αp
3,EW

and αp
4,EW, and only if they are proportional to the large Wilson coefficients C1,2 and

Ceff
7γ . These corrections are present for i = 8, 10 and correspond to the penguin diagrams

of Figure 4 with the gluon replaced by a photon. (An additional contribution for neutral
vector mesons will be discussed separately below). For i = 10 we obtain

P p
10(M2) =

α

9πNc

{
(C1 + NcC2)

[
4

3
ln

mb

µ
+

2

3
− GM2(sp)

]
− 3Ceff

7γ

∫ 1

0

dx

1 − x
ΦM2(x)

}
.

(44)
For i = 8 we find

P p
8 (M2) =

α

9πNc

{
(C1 + NcC2)

[
4

3
ln

mb

µ
+

2

3
− ĜM2(sp)

]
− 3Ceff

7γ

}
(45)

if M2 is a pseudoscalar meson, and

P p
8 (M2) = −

α

9πNc
(C1 + NcC2) ĜM2(sp) (46)

if M2 is a vector meson.
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Figure 8: Weak annihilation contributions.

coefficients can be taken from [10]. We consider b-quark decay and use the convention
that M1 contains an antiquark from the weak vertex with longitudinal momentum frac-
tion ȳ. For non-singlet annihilation M2 then contains a quark from the weak vertex with
momentum fraction x. The basic building blocks when both mesons are pseudoscalar
are given by (omitting the argument M1M2 for brevity)

Ai
1 = παs

∫ 1

0

dxdy

{
ΦM2(x) ΦM1(y)

[
1

y(1 − xȳ)
+

1

x̄2y

]
+ rM1

χ rM2
χ Φm2(x) Φm1(y)

2

x̄y

}
,

Af
1 = 0 ,

Ai
2 = παs

∫ 1

0

dxdy

{
ΦM2(x) ΦM1(y)

[
1

x̄(1 − xȳ)
+

1

x̄y2

]
+ rM1

χ rM2
χ Φm2(x) Φm1(y)

2

x̄y

}
,

Af
2 = 0 , (54)

Ai
3 = παs

∫ 1

0

dxdy

{
rM1
χ ΦM2(x) Φm1(y)

2ȳ

x̄y(1 − xȳ)
− rM2

χ ΦM1(y) Φm2(x)
2x

x̄y(1 − xȳ)

}
,

Af
3 = παs

∫ 1

0

dxdy

{
rM1
χ ΦM2(x) Φm1(y)

2(1 + x̄)

x̄2y
+ rM2

χ ΦM1(y) Φm2(x)
2(1 + y)

x̄y2

}
.

When M1 is a vector meson and M2 a pseudoscalar, one has to change the sign of the
second (twist-4) term in Ai

1, the first (twist-2) term in Ai
2, and the second term in Ai

3

and Af
3 . When M2 is a vector meson and M1 a pseudoscalar, one only has to change the

overall sign of Ai
2.

In (54) the superscripts ‘i’ and ‘f ’ refer to gluon emission from the initial and final-
state quarks, respectively (see Figure 8). The subscript ‘k’ on Ai,f

k refers to one of the
three possible Dirac structures Γ1 ⊗ Γ2, which arise when the four-quark operators in
the effective weak Hamiltonian are Fierz-transformed into the form (q̄1b)Γ1(q̄2q3)Γ2 , such
that the quarks in the first bracket refer to the constituents of the B̄ meson. Specifically,
we have k = 1 for (V − A) ⊗ (V − A), k = 2 for (V − A) ⊗ (V + A), and k = 3 for
(−2)(S − P ) ⊗ (S + P ). The power suppression of weak annihilation terms compared
to the leading spectator interaction via gluon exchange is evident from the fact that
annihilation terms are proportional to fB rather than fBmB/λB.

In terms of these building blocks the non-singlet annihilation coefficients are given

22

hard scattering weak annihilation

• NP contributions to the QCD and EW penguin
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• Effective Hamiltonian: 

Operator Level Analysis:         amplitudes

51

b→ s

2

mode experiment no Vub with Vub

aψKS 0.671 ± 0.024 2.1 σ 1.4 σ

aφKS 0.445 ± 0.175 2.1 σ 1.6 σ

aη′KS
0.59 ± 0.07 2.4 σ 1.8 σ

a(φ+η′)KS
0.57 ± 0.065 2.7 σ 2.2 σ

a(ψ+φ+η′)KS
0.66 ± 0.023 2.2 σ 1.7 σ

FIG. 1: Unitarity triangle fit in the SM. All constraints are
imposed at the 68% C.L.. The solid contours in the upper plot
is obtained using the constraints from εK , ∆MBs/∆MBd and
Vcb. In the lower plot, we include |Vub| as well. The regions
allowed by aψK and a(φ+η′)Ks are superimposed. In the table,
we show the deviations of the experimental determinations of
sin(2β) in b → cc̄s and b → ss̄s decays [22] from the SM
prediction obtained without and with the inclusion of Vub in
the fit. No use of γ is made.

the (Cε, θA) plane. We obtain:

Cε = 1.24 ± 0.14 (11)

θA = −(3.9 ± 2.4)o (12)

In this case, the extracted value of sin(2β) is very close
to aψK (the time dependent CP asymmetry in B →
J/ψKS) and does not depend much on the inclusion of
Vub; hence the amount of new physics required to bring
εK in agreement with the rest of the fit is quite insensi-
tive to the Vub constraint. In Fig. 4, the contours define
regions with an integrated confidence level of 68% and
95%; therefore, the projection of these contours on the
axes results in ranges that are larger than the single–
variables ranges we extracted in Eqs. (9-12).

3- Operator analysis of θA. In this section we in-
terpret the difference between the time dependent CP
asymmetries aψK and aφ,η′ in terms of new physics con-

mode experiment no Vub with Vub

aψKS 0.671 ± 0.024 1.9 σ 1.3 σ

aφKS 0.445 ± 0.175 2.0 σ 1.6 σ

aη′KS
0.59 ± 0.07 2.2 σ 1.7 σ

a(φ+η′)KS
0.57 ± 0.065 2.5 σ 2.1 σ

a(ψ+φ+η′)KS
0.66 ± 0.023 2.0 σ 1.7 σ

FIG. 2: Unitarity triangle fit in the SM. All constraints are
imposed at the 68% C.L.. The solid contours in the upper plot
is obtained using the constraints from εK , ∆MBs/∆MBd , Vcb

and γ from B → D(∗)K(∗) decays. In the lower plot, we in-
clude |Vub| as well. The regions allowed by aψK and a(φ+η′)Ks

are superimposed. In the table, we show the deviations of
the experimental determinations of sin(2β) in b → cc̄s and
b → ss̄s decays [22] from the SM prediction obtained without
and with the inclusion of Vub in the fit.

tributions to the QCD or EW penguin operators. The
effective Hamiltonian responsible for the B → (φ, η′)KS

amplitudes is:

Heff =
4GF√

2
VcbV

∗
cs

(

6
∑

i=1

Ci(µ)Oi(µ) +
6

∑

i=3

CiQ(µ)Oi(µ)

)

.

The definition of the various operators can be found,
for instance, in Ref. [5]. Here we focus on two operators
whose matching conditions are are likely to receive new
physics contributions:

Q4 = (s̄LγµT abL)
∑

q

(q̄γµT aq) . (13)

Q3Q = (s̄LγµbL)
∑

q

Qq (q̄γµq) . (14)

We adopt the following parametrization of new physics
effects:
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tributions to the QCD or EW penguin operators. The
effective Hamiltonian responsible for the B → (φ, η′)KS

amplitudes is:

Heff =
4GF√

2
VcbV

∗
cs

(

6
∑

i=1

Ci(µ)Oi(µ) +
6

∑

i=3

CiQ(µ)Oi(µ)

)

.

The definition of the various operators can be found,
for instance, in Ref. [5]. Here we focus on two operators
whose matching conditions are are likely to receive new
physics contributions:

Q4 = (s̄LγµT abL)
∑

q

(q̄γµT aq) . (13)

Q3Q = (s̄LγµbL)
∑

q

Qq (q̄γµq) . (14)

We adopt the following parametrization of new physics
effects:

likely to receive NP corrections

• Assume the following parametrization of NP effects:

loop suppression + QED/QCD 
penguin gs,e dependence

δC4,3Q(µ0) =
αs,e

4π

eiϕ

Λ2

[
4GF√

2
VcbV

∗
cs

]−1

Effective mass scale that absorbs 
NP couplings
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Operator Level Analysis:         amplitudesb→ s

Λ ∼ [350÷ 420] GeV Λ ∼ [140÷ 190] GeV
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• Recent lattice QCD (BK, ξ, ...) → possible NP in the UT fit

• We need better understanding of  inclusive Vub and Vcb 

• This “tension” in the UT fit can be explained by a new phase in 
Bd/K mixing

• As long as Vxb determinations remain problematic, removing 
semileptonic decays allows to cast the UT fit as a clean & high-
precision tool to identify new physics

• Super-B level precision on B→τν coupled with improvements on 
the lattice determination of                 can test the SM at the 5σ 
level

Conclusions
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fBs

√
Bs
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• Hints of NP in b→s amplitudes (CP asymmetries in (Φ,η’,π)K 
final states) and Bs mixing 

• Typical upper bounds on NP scales are in the TeV range:

Conclusions (cont’d)
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Λ φ(o)

A(b→s) O4: [250÷430] GeV   O3Q: [90÷200] GeV O4: [0,70]   O3Q: [0,30]

Bd mixing [1.1÷2.3] TeV 10÷90

K mixing LL: [1.1÷1.9] TeV   LR: [14÷24] TeV 130÷320

Bd=Bs mixing [1÷2] TeV 10÷70


