B mixing and supersymmetry

Ulrich Nierste
Karlsruhe Institute of Technology

Theory seminar
Fermilab, July 2011
May 17, 2010

The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.
May 17, 2010

The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, “So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God.”
May 17, 2010
The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, “So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God.”

July 9, 2011
New Scientist:

“This result won’t explain all of the matter-antimatter asymmetry,” says Val Gibson at the University of Cambridge, “but it could indicate new physics.”

“Supersymmetry can easily explain this measurement”, says Nierste.”
Contents

Basics

The $|V_{ub}|$ puzzle

Global analysis of $B_s - \bar{B}_s$ mixing and $B_d - \bar{B}_d$ mixing

GUT

Radiative Flavor Violation

Conclusions
SM Yukawa interaction:
Higgs doublet \(H = \left(\begin{array}{c} G^+ \\ v + \frac{h^0 + iG^0}{\sqrt{2}} \end{array} \right) \) with \(v = 174 \text{ GeV} \).

Charge-conjugate doublet: \(\tilde{H} = \left(\begin{array}{c} v + \frac{h^0 - iG^0}{\sqrt{2}} \\ -G^- \end{array} \right) \)
SM Yukawa interaction:

Higgs doublet $H = \left(\begin{array}{c} G^+ \\ v + \frac{h^0 + iG^0}{\sqrt{2}} \end{array} \right)$ with $v = 174$ GeV.

Charge-conjugate doublet: $\tilde{H} = \left(\begin{array}{c} v + \frac{h^0 - iG^0}{\sqrt{2}} \\ -G^- \end{array} \right)$

Yukawa lagrangian of quark fields:

$$-L_Y = Y^d_{jk} \overline{Q}^j_L H d^k_R + Y^u_{jk} \overline{Q}^j_L \tilde{H} u^k_R + \text{h.c.}$$

The Yukawa matrices Y^f are arbitrary complex 3×3 matrices.
SM Yukawa interaction:

Higgs doublet \(H = \left(\begin{array}{c} G^+ \\ v + \frac{h^0 + iG^0}{\sqrt{2}} \end{array} \right) \) with \(v = 174 \) GeV.

Charge-conjugate doublet: \(\tilde{H} = \left(\begin{array}{c} v + \frac{h^0 - iG^0}{\sqrt{2}} \\ -G^- \end{array} \right) \)

Yukawa lagrangian of quark fields:

\[-L_Y = Y_{jk}^d \overline{Q}_L^j H d_R^k + Y_{jk}^u \overline{Q}_L^j \tilde{H} u_R^k + \text{h.c.}\]

The Yukawa matrices \(Y^f \) are arbitrary complex \(3 \times 3 \) matrices.

Switch to a basis with diagonal mass matrices \(M^f = Y^f v \).
With three unphysical rotations achieve

\[
\begin{align*}
Y^u &= \hat{Y}^u = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix} \\
Y^d &= V^\dagger \hat{Y}^d
\end{align*}
\]

and

\[
\begin{align*}
\hat{Y}^d &= \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}
\end{align*}
\]

with \(y_i \geq 0 \).

\(V \) is the unitary Cabbibbo-Kobayashi-Maskawa (CKM) matrix.
\[\Upsilon^u = \hat{\Upsilon}^u = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}, \]

\[\Upsilon^d = V^\dagger \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} \]
\[Y^u = \hat{Y}^u = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}, \quad Y^d = V^\dagger \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} \]

The last rotation

\[d^j_L = V_{jk} d^{k'}_L \]

diagonalizes \(Y^d \), but puts \(V \) into the \(W \) boson vertices:

\[W_\mu \bar{u}^j_L \gamma^\mu d^j_L = W_\mu V_{jk} \bar{u}^j_L \gamma^\mu d^{k'}_L \]
Flavor physics is governed by extremely small numbers:

\[Y^d \equiv V^\dagger \tilde{Y}^d = \begin{pmatrix} 10^{-5} & -7 \cdot 10^{-5} & (12 + 6i) \cdot 10^{-5} \\ 4 \cdot 10^{-6} & 3 \cdot 10^{-4} & -6 \cdot 10^{-4} \\ (2 + 6i) \cdot 10^{-8} & 10^{-5} & 2 \cdot 10^{-2} \end{pmatrix} \]

evaluated at the energy scale \(m_t \). Off-diagonal element with largest magnitude: \(V_{ts}^* y_b \equiv V_{32}^* y_b = -6 \cdot 10^{-4} \).
Flavor physics is governed by extremely small numbers:

\[Y^d = V^\dagger \hat{Y}^d = \begin{pmatrix}
10^{-5} & -7 \cdot 10^{-5} & (12 + 6i) \cdot 10^{-5} \\
4 \cdot 10^{-6} & 3 \cdot 10^{-4} & -6 \cdot 10^{-4} \\
(2 + 6i) \cdot 10^{-8} & 10^{-5} & 2 \cdot 10^{-2}
\end{pmatrix} \]

evaluated at the energy scale \(m_t \). Off-diagonal element with largest magnitude: \(V^*_{ts} y_b \equiv V^*_{32} y_b = -6 \cdot 10^{-4} \).

Flavor violation appears only in charged-current vertices. Flavor-changing neutral current (FCNC) processes are loop suppressed!

\[\Rightarrow \quad \text{FCNC processes are sensitive to new physics.} \]
Examples of FCNC processes:

- $B_s - \bar{B}_s$ mixing
 - $|\Delta B| = 2$

- Penguin diagram
 - $|\Delta B| = 1$
Examples of **FCNC** processes:

$B_s - \overline{B}_s$ mixing

$$|\Delta B| = 2$$

Penguin diagram

$$|\Delta B| = 1$$

Sensitivity of $b \to s$ amplitude A to new physics with FCNC parameter δ_{FCNC} and scale $\Lambda \gg M_W$:

$$\frac{|A_{NP}|_{\Delta B=2}}{|A_{SM}|_{\Delta B=2}} = \frac{|\delta_{\text{FCNC}}|^2}{|V_{ts}|^2} \frac{M_W^2}{\Lambda^2},$$

$$\frac{|A_{NP}|_{\Delta B=1}}{|A_{SM}|_{\Delta B=1}} = \frac{|\delta_{\text{FCNC}}|}{|V_{ts}|} \frac{M_W^2}{\Lambda^2}.$$
Examples of **FCNC** processes:

B_s - \overline{B_s} mixing

\[|\Delta B| = 2 \]

Penguin diagram

\[|\Delta B| = 1 \]

Sensitivity of **b → s** amplitude \(A \) to new physics with FCNC parameter \(\delta_{\text{FCNC}} \) and scale \(\Lambda \gg M_W \):

\[
\frac{|A_{\text{NP}}|_{\Delta B=2}}{|A_{\text{SM}}|_{\Delta B=2}} = \frac{|\delta_{\text{FCNC}}|^2 M_W^2}{V_{ts}^2 \Lambda^2},
\]

\[
\frac{|A_{\text{NP}}|_{\Delta B=1}}{|A_{\text{SM}}|_{\Delta B=1}} = \frac{|\delta_{\text{FCNC}}| M_W^2}{V_{ts} \Lambda^2}.
\]

\[\Rightarrow \] Meson-antimeson mixing is more sensitive to generic NP than FCNC decay amplitudes, if \(|\delta_{\text{FCNC}}| > |V_{ts}| \).
Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2254$:

$$
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
 \simeq
\begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + \frac{\lambda^2}{2}\right)(\bar{\rho} - i\bar{\eta}) \\
-\lambda - iA^2\lambda^5\bar{\eta} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 - iA\lambda^4\bar{\eta} & 1
\end{pmatrix}
$$

with the Wolfenstein parameters λ, A, $\bar{\rho}$, $\bar{\eta}$

CP violation $\Leftrightarrow \bar{\eta} \neq 0$
Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2254$:

$$
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix} \simeq
\begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + \frac{\lambda^2}{2}\right) (\bar{\rho} - i\bar{\eta}) \\
-\lambda - iA^2\lambda^5\bar{\eta} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3 (1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 - iA\lambda^4\bar{\eta} & 1
\end{pmatrix}
$$

with the Wolfensteinn parameters λ, A, $\bar{\rho}$, $\bar{\eta}$

CP violation $\Leftrightarrow \bar{\eta} \neq 0$

Unitarity triangle:

Exact definition:

$$
\bar{\rho} + i\bar{\eta} = -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} = \left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}
$$

$$
A = (\bar{\rho}, \bar{\eta})
$$

$$
\bar{\rho} + i\bar{\eta} = 1 - \bar{\rho} - i\bar{\eta}
$$

$$
C = (0,0)
$$

$$
B = (1,0)
$$
New-physics analysers:

- **Global fit to UT**: overconstrain (ρ, η), probes FCNC processes $K - \bar{K}$, $B_d - \bar{B}_d$ and $B_s - \bar{B}_s$ mixing.
New-physics analysers:

- **Global fit to UT:** overconstrain \((\bar{\rho}, \bar{\eta})\), probes FCNC processes \(K \rightarrow \bar{K}, B_d \rightarrow \bar{B}_d\) and \(B_s - \bar{B}_s\) mixing.

- **Global fit to \(B_s - \bar{B}_s\) mixing:** mass difference \(\Delta m_s\), width difference \(\Delta \Gamma_s\), CP asymmetries in \(B_s \rightarrow J/\psi \phi\) and \((\bar{B}_s) \rightarrow X \ell \nu_\ell\).
New-physics analysers:

- **Global fit to UT**: overconstrain \((\bar{\rho}, \bar{\eta})\), probes FCNC processes \(K^-K^+\), \(B_d - \bar{B}_d\) and \(B_s - \bar{B}_s\) mixing.
- **Global fit to \(B_s - \bar{B}_s\) mixing**: mass difference \(\Delta m_s\), width difference \(\Delta \Gamma_s\), CP asymmetries in \(B_s \rightarrow J/\psi \phi\) and \(\bar{B}_s \rightarrow X \ell \nu \ell\).
- **Penguin decays**: \(B \rightarrow X_s \gamma\), \(B \rightarrow X_s \ell^+ \ell^-\), \(B \rightarrow K \pi\), \(B_d \rightarrow \phi K_S\), \(B_s \rightarrow \mu^+ \mu^-\), \(K \rightarrow \pi \nu \bar{\nu}\).
New-physics analysers:

- **Global fit to UT**: overconstrain \((\rho, \eta)\), probes FCNC processes \(K - \bar{K}\), \(B_d - \bar{B}_d\) and \(B_s - \bar{B}_s\) mixing.
- **Global fit to \(B_s - \bar{B}_s\) mixing**: mass difference \(\Delta m_s\), width difference \(\Delta \Gamma_s\), CP asymmetries in \(B_s \to J/\psi \phi\) and \(\bar{B}_s \to X \ell \nu \ell\).
- **Penguin decays**: \(B \to X_s \gamma\), \(B \to X_s \ell^+ \ell^-\), \(B \to K \pi\), \(B_d \to \phi K_S\), \(B_s \to \mu^+ \mu^-\), \(K \to \pi \nu \bar{\nu}\).
- **CKM-suppressed or helicity-suppressed tree-level decays**: \(B^+ \to \tau^+ \nu\), \(B \to \pi \ell \nu\), \(B \to D \tau \nu\), probe charged Higgses and right-handed W-couplings.
Global fit in the SM from CKMfitter:

Statistical method: Rfit, a Frequentist approach.
Global fit in the SM from UTfit:

Statistical method: Bayesian.
CKM matrix V

$$V = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}$$

fixed by measurements of

$$|V_{us}| = 0.2254 \pm 0.0013,$$

$$|V_{cb}| = (40.9 \pm 0.7) \cdot 10^{-3}$$

and a global fit to $(\bar{\rho}, \bar{\eta})$
CKM matrix V

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

fixed by measurements of
$$|V_{us}| = 0.2254 \pm 0.0013,$$
$$|V_{cb}| = (40.9 \pm 0.7) \cdot 10^{-3}$$
and a global fit to (ρ, η)

Unitarity triangle:

$$\bar{\rho} + i \bar{\eta} = -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$
$$= \left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}$$

A=$(\bar{\rho}, \bar{\eta})$
B=$(1, 0)$
C=$(0, 0)$
The $|V_{ub}|$ puzzle

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \rightarrow \pi \ell \nu$,
- inclusive decay $B \rightarrow X \ell \nu$ and
- leptonic decay $B^+ \rightarrow \tau^+ \nu_{\tau}$.
The $|V_{ub}|$ puzzle

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \rightarrow \pi \ell \nu$,
- inclusive decay $B \rightarrow X \ell \nu$ and
- leptonic decay $B^+ \rightarrow \tau^+ \nu_{\tau}$.

Average of several BaBar and Belle measurements:

$$B^{\text{exp}}(B^+ \rightarrow \tau^+ \nu_{\tau}) = (1.68 \pm 0.31) \cdot 10^{-4}$$

Standard Model:

$$B(B^+ \rightarrow \tau^+ \nu_{\tau}) = 1.13 \cdot 10^{-4} \cdot \left(\frac{|V_{ub}|}{4 \cdot 10^{-3}}\right)^2 \left(\frac{f_B}{200 \text{ MeV}}\right)^2$$
The $|V_{ub}|$ puzzle

\[|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3} \]

\[|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3} \]

\[|V_{ub,B\rightarrow\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3} \]
The $|V_{ub}|$ puzzle

$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$

$|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$

$|V_{ub,B\rightarrow\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

$|V_{ub,B\rightarrow\tau\nu}| = \left[5.10 \pm 0.47|_{\text{exp}} \pm 0.35|_{f_B}\right] \cdot 10^{-3}$

$= \left[5.10 \pm 0.59\right] \cdot 10^{-3}$
The $|V_{ub}|$ puzzle

$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$

$|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$

$|V_{ub,B\rightarrow\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

$|V_{ub,B\rightarrow\tau\nu}| = \left[5.10 \pm 0.47|_{\text{exp}} \pm 0.35|_{f_B} \right] \cdot 10^{-3}$

$= [5.10 \pm 0.59] \cdot 10^{-3}$

\Rightarrow no puzzle with individual $|V_{ub}|$ determinations
The $|V_{ub}|$ puzzle

Indirect determination:

find $|V_{ub}| \propto |V_{cb}| R_u$

from $R_u = \frac{\sin \beta}{\sin \alpha}$

With $\alpha = 89^\circ \pm 4.4^\circ$ and $\beta = 21.15^\circ \pm 0.89^\circ$ find

$|V_{ub}|_{\text{ind}} = (3.41 \pm 0.15) \cdot 10^{-3}$

Essential: β from $A_{\text{CP}}^{\text{mix}}(B_d \rightarrow J/\psi K_S)$
The $|V_{ub}|$ puzzle

$|V_{ub, \text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$

$|V_{ub, \text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$

$|V_{ub, B \to \tau \nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

$|V_{ub, \text{ind}}| = (3.41 \pm 0.15) \cdot 10^{-3}$
The $|V_{ub}|$ puzzle

$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$

$|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$

$|V_{ub,B\to\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

$|V_{ub,\text{ind}}| = (3.41 \pm 0.15) \cdot 10^{-3}$

Alleviate the 2.9σ tension between $|V_{ub,\text{ind}}|$ and $|V_{ub,B\to\tau\nu}|$ with new physics in

- $B^+ \to \tau^+ \nu_\tau$

 E.g. right-handed W coupling, possible in SUSY through loop effects.

Crivellin 2009
The $|V_{ub}|$ puzzle

$|V_{ub,excl}| = (3.25 \pm 0.30) \cdot 10^{-3}$

$|V_{ub,incl}| = (4.25 \pm 0.25) \cdot 10^{-3}$

$|V_{ub,B\rightarrow\tau\nu}| = (5.04 \pm 0.64) \cdot 10^{-3}$

$|V_{ub,ind}| = (3.41 \pm 0.15) \cdot 10^{-3}$

Alleviate the 2.9σ tension between $|V_{ub,ind}|$ and $|V_{ub,B\rightarrow\tau\nu}|$ with new physics in

- $B^+ \rightarrow \tau^+\nu_\tau$ or
- $A_{CP}^{mix}(B_d \rightarrow J/\psi K_S)$. ← easier!
$B - \overline{B}$ mixing in the Standard Model

$B_q - \overline{B}_q$ mixing with $q = d$ or $q = s$ involves the 2×2 matrices M and Γ.
B – B mixing in the Standard Model

B\(_q\) – **B**\(_\bar{q}\) mixing with \(q = d\) or \(q = s\) involves the 2 × 2 matrices \(M\) and \(\Gamma\).

The **mass matrix element** \(M^q_{12}\) stems from the **dispersive** (real) part of the box diagram, internal \(t\).

The **decay matrix element** \(\Gamma^q_{12}\) stems from the **absorptive** (imaginary) part of the box diagram, internal \(c, u\).
$\mathbf{B} - \overline{\mathbf{B}}$ mixing in the Standard Model

$\mathbf{B}_q - \overline{\mathbf{B}}_q$ mixing with $q = d$ or $q = s$ involves the 2×2 matrices M and Γ.

The mass matrix element M^q_{12} stems from the dispersive (real) part of the box diagram, internal t.

The decay matrix element Γ^q_{12} stems from the absorbive (imaginary) part of the box diagram, internal c, u.

3 physical quantities in $\mathbf{B}_q - \overline{\mathbf{B}}_q$ mixing:

$$|M^q_{12}|, \quad |\Gamma^q_{12}|, \quad \phi_q \equiv \arg \left(-\frac{M^q_{12}}{\Gamma^q_{12}} \right)$$
The two eigenstates found by diagonalising $M - i \frac{\Gamma}{2}$ differ in their masses and widths:

mass difference \[\Delta m_q \approx 2|M_{12}^q|, \]
width difference \[\Delta \Gamma_q \approx 2|\Gamma_{12}^q| \cos \phi_q \]
The two eigenstates found by diagonalising $M - i \Gamma / 2$ differ in their masses and widths:

\[
\Delta m_q \approx 2|M^q_{12}|, \\
\Delta \Gamma_q \approx 2|\Gamma^q_{12}| \cos \phi_q
\]

CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

\[
a_{fs}^q = \frac{|\Gamma^q_{12}|}{|M^q_{12}|} \sin \phi_q
\]
May 14, 2010: $\textbf{DØ}$ presents

$$a_{fs} = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$$

for a mixture of B_d and B_s mesons with

$$a_{fs} = (0.506 \pm 0.043)a_{fs}^d + (0.494 \pm 0.043)a_{fs}^s$$

The result is 3.2σ away from $a_{fs}^{\text{SM}} = (-0.20 \pm 0.03) \cdot 10^{-3}$.

A. Lenz, UN, 2006 and 2011

Averaging with an older CDF measurement yields

$$a_{fs} = (-8.5 \pm 2.8) \cdot 10^{-3},$$

which is 2.9σ away from a_{fs}^{SM}.
DØ result presented 30 Jun 2011:

\[a_{fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3} \]

This differs from the SM value by 3.9\(\sigma\)!
Generic new physics

Phases $\phi_q = \arg(-M_{12}^q / \Gamma_{12}^q)$ in the Standard Model:

$\phi_d^{\text{SM}} = -4.3^\circ \pm 1.4^\circ$, \hspace{1cm} $\phi_s^{\text{SM}} = 0.2^\circ$.

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{\text{SM},q} \cdot \Delta_q, \hspace{1cm} \Delta_q \equiv |\Delta_q| e^{i\phi_q^\Delta}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{\text{SM}} + \phi_s^\Delta \simeq \phi_s^\Delta$.
Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model:

$\phi_d^{SM} = -4.3^\circ \pm 1.4^\circ$, $\phi_s^{SM} = 0.2^\circ$.

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{SM,q} \cdot \Delta_q, \quad \Delta_q \equiv |\Delta_q| e^{i\phi_q^\Delta}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^\Delta \simeq \phi_s^\Delta$.

The measurements

$$\Delta m_s = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1} \quad \text{CDF}$$
$$\Delta m_s = (17.63 \pm 0.11 \pm 0.04) \text{ ps}^{-1} \quad \text{LHCb (prelim)}$$

imply

$$|\Delta_s| = 1.03 \pm 0.14_{(th)} \pm 0.01_{(exp)}$$
Confront the DØ/CDF average

\[a_{fs} = (0.506 \pm 0.043) a_{fs}^d + (0.494 \pm 0.043) a_{fs}^s \]

\[= (-8.5 \pm 2.8) \cdot 10^{-3} \]

with (A. Lenz, UN, 2011)

\[a_{fs}^d = (5.4 \pm 1.0) \cdot 10^{-3} \cdot \sin \phi_d / |\Delta_d|, \]

\[a_{fs}^s = (5.1 \pm 1.0) \cdot 10^{-3} \cdot \sin \phi_s / |\Delta_s|. \]
Confront the DØ/CDF average

\[a_{fs} = (0.506 \pm 0.043)a_{fs}^d + (0.494 \pm 0.043)a_{fs}^s = (-8.5 \pm 2.8) \cdot 10^{-3} \]

with (A. Lenz, UN, 2011)

\[a_{fs}^d = (5.4 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_d}{|\Delta_d|}, \quad a_{fs}^s = (5.1 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_s}{|\Delta_s|}. \]

⇒ Need both \(\phi_s < 0 \) and \(\phi_d < 0 \).
Confront the DØ/CDF average

\[a_{fs} = (0.506 \pm 0.043)a_{fs}^d + (0.494 \pm 0.043)a_{fs}^s \]
\[= (-8.5 \pm 2.8) \cdot 10^{-3} \]

with (A. Lenz, UN, 2011)

\[a_{fs}^d = (5.4 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_d}{|\Delta_d|}, \quad a_{fs}^s = (5.1 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_s}{|\Delta_s|}. \]

⇒ Need both \(\phi_s < 0 \) and \(\phi_d < 0 \).

\[A_{CP}^{mix}(B_d \rightarrow J/\psi K_S) \propto \sin(2\beta + \phi_d^A): \]

With \(\phi_d^A < 0 \) find \(\beta > \beta^{SM} = 21^\circ \) ⇒ \(|V_{ub}| \) puzzle solvable.
Global analysis of $B_s - \bar{B}_s$ mixing and $B_d - \bar{B}_d$ mixing

Based on work with A. Lenz and the CKMfitter Group
(J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold,
H. Lacker, S. Monteil, V. Niess)
arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic
errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein
parameters and to the new physics parameters Δ_s and Δ_d:

$$\Delta_q \equiv \frac{M_{12}^q}{M_{12}^{q;SM}}, \quad \Delta_q \equiv |\Delta_q|e^{i\phi_q^\Delta}.$$
Result for $B_d - \overline{B}_d$ mixing:

SM point $\Delta_d = 1$
disfavored by 2.7σ.

Main driver:
$B^+ \rightarrow \tau^+ \nu_\tau$
Result for $B_s - \bar{B}_s$ mixing:

SM point $\Delta_s = 1$ disfavored by 2.7σ.

without 2010 CDF/DØ and 2011 LHCb data on $B_s \rightarrow J/\psi\phi$.
p-values:
Calculate χ^2 / N_{dof} with and without a hypothesis to find:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_d = 1$ (2D)</td>
<td>2.7 σ</td>
</tr>
<tr>
<td>$\Delta_s = 1$ (2D)</td>
<td>2.7 σ</td>
</tr>
<tr>
<td>$\Delta_d = \Delta_s$ (2D)</td>
<td>2.1 σ</td>
</tr>
<tr>
<td>$\Delta_d = \Delta_s = 1$ (4D)</td>
<td>3.6 σ</td>
</tr>
</tbody>
</table>
Hypothesis p-values:

Calculate χ^2 / N_{dof} with and without a hypothesis to find:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_d = 1$ (2D)</td>
<td>$2.7 , \sigma$</td>
</tr>
<tr>
<td>$\Delta_s = 1$ (2D)</td>
<td>$2.7 , \sigma$</td>
</tr>
<tr>
<td>$\Delta_d = \Delta_s$ (2D)</td>
<td>$2.1 , \sigma$</td>
</tr>
<tr>
<td>$\Delta_d = \Delta_s = 1$ (4D)</td>
<td>$3.6 , \sigma$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im(Δ_d) = 0 (1D)</td>
<td>$2.7 , \sigma$</td>
</tr>
<tr>
<td>Im(Δ_s) = 0 (1D)</td>
<td>$3.1 , \sigma$</td>
</tr>
<tr>
<td>Im(Δ_d) = Im(Δ_s) = 0 (2D)</td>
<td>$3.8 , \sigma$</td>
</tr>
</tbody>
</table>
Fit result at 95%CL:

\[\phi_s^\Delta = (-52^{+32}_{-25})^\circ \quad \text{(and } \phi_s^\Delta = (-130^{+28}_{-28})^\circ) \]

Compare with the 2010 CDF/DØ result from \(B_s \to J/\psi \phi \):

CDF: \(\phi_s^\Delta = (-27^{+44}_{-49})^\circ \) at 95%CL

DØ: \(\phi_s^\Delta = (-42^{+59}_{-51})^\circ \) at 95%CL

Naive average: \(\phi_s^{\text{avg}} = (-36 \pm 35)^\circ \) at 95%CL

DØ EPS 2011: \(\phi_s^\Delta = (-30^{+22}_{-21})^\circ \) at 68%CL

LHCb Beauty 2011: \(-199^\circ \leq \phi_s^\Delta \leq 13^\circ \) at 95%CL
Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{fs} = \left(-4.2^{+2.9}_{-2.7}\right) \cdot 10^{-3} \quad \text{at } 2\sigma.$$
Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{fs} = \left(-4.2^{+2.9}_{-2.7}\right) \cdot 10^{-3} \quad \text{at } 2\sigma.$$

This is just 1.5σ away from the DØ/CDF average

$$a_{fs} = (-8.5 \pm 2.8) \cdot 10^{-3}.$$

1.6σ discrepancy (Rfit method) with new DØ result

$$a_{fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}.$$
A fit to a real parameter $\Delta = \Delta_s = \Delta_d$ is not better than the SM fit and gives $\Delta = 0.90^{+0.31}_{-0.10}$ at 2σ.
A fit to a real parameter $\Delta = \Delta_s = \Delta_d$ is not better than the SM fit and gives $\Delta = 0.90^{+0.31}_{-0.10}$ at 2σ.

\Rightarrow bad news for CMSSM and mSUGRA
The **MSSM** has many new sources of flavor violation, all in the supersymmetry-breaking sector.

No problem to get big effects in $B_s - \bar{B}_s$ mixing, but rather to suppress the big effects elsewhere.
Squark mass matrix

Diagonalize the Yukawa matrices Y^u_{jk} and Y^d_{jk}

\Rightarrow quark mass matrices are diagonal, super-CKM basis
Squark mass matrix

Diagonalize the Yukawa matrices Y^u_{jk} and Y^d_{jk}
⇒ quark mass matrices are diagonal, super-CKM basis

E.g. Down-squark mass matrix:

$$M^2_{\tilde{d}} = \begin{pmatrix}
(M_{1L}^{\tilde{d}})^2 & \Delta_{12}^{\tilde{d}LL} & \Delta_{13}^{\tilde{d}LL} & \Delta_{11}^{\tilde{d}LR} & \Delta_{12}^{\tilde{d}LR} & \Delta_{13}^{\tilde{d}LR} \\
\Delta_{12}^{\tilde{d}LL} & (M_{2L}^{\tilde{d}})^2 & \Delta_{23}^{\tilde{d}LL} & \Delta_{12}^{\tilde{d}RL} & \Delta_{13}^{\tilde{d}RL} & \Delta_{23}^{\tilde{d}RL} \\
\Delta_{13}^{\tilde{d}LL} & \Delta_{23}^{\tilde{d}LL} & (M_{3L}^{\tilde{d}})^2 & \Delta_{13}^{\tilde{d}RR} & \Delta_{12}^{\tilde{d}RR} & \Delta_{23}^{\tilde{d}RR} \\
\Delta_{11}^{\tilde{d}LR} & \Delta_{12}^{\tilde{d}RL} & \Delta_{13}^{\tilde{d}RR} & (M_{1R}^{\tilde{d}})^2 & \Delta_{12}^{\tilde{d}RR} & \Delta_{13}^{\tilde{d}RR} \\
\Delta_{12}^{\tilde{d}LR} & \Delta_{22}^{\tilde{d}RL} & \Delta_{23}^{\tilde{d}RR} & \Delta_{12}^{\tilde{d}RR} & (M_{2R}^{\tilde{d}})^2 & \Delta_{23}^{\tilde{d}RR} \\
\Delta_{13}^{\tilde{d}LR} & \Delta_{23}^{\tilde{d}LR} & \Delta_{33}^{\tilde{d}RR} & \Delta_{13}^{\tilde{d}RR} & \Delta_{23}^{\tilde{d}RR} & (M_{3R}^{\tilde{d}})^2
\end{pmatrix}$$
Squark mass matrix

Diagonalize the Yukawa matrices Y^u_{jk} and Y^d_{jk}

⇒ quark mass matrices are diagonal, super-CKM basis

E.g. Down-squark mass matrix:

$$M^2_{\tilde{d}} = \begin{pmatrix}
(M^\tilde{d}_{1L})^2 & \Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{13} & \Delta^\tilde{d}_{11} & \Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{13} \\
\Delta^\tilde{d}_{12} & (M^\tilde{d}_{2L})^2 & \Delta^\tilde{d}_{23} & \Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{13} & \Delta^\tilde{d}_{23} \\
\Delta^\tilde{d}_{13} & \Delta^\tilde{d}_{23} & (M^\tilde{d}_{3L})^2 & \Delta^\tilde{d}_{13} & \Delta^\tilde{d}_{23} & \Delta^\tilde{d}_{33} \\
\Delta^\tilde{d}_{11} & \Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{13} & (M^\tilde{d}_{1R})^2 & \Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{13} \\
\Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{11} & \Delta^\tilde{d}_{12} & \Delta^\tilde{d}_{13} & (M^\tilde{d}_{2R})^2 & \Delta^\tilde{d}_{23} \\
\Delta^\tilde{d}_{13} & \Delta^\tilde{d}_{23} & \Delta^\tilde{d}_{33} & \Delta^\tilde{d}_{13} & \Delta^\tilde{d}_{23} & (M^\tilde{d}_{3R})^2
\end{pmatrix}$$

Not diagonal! ⇒ new FCNC transitions.
\[\delta_{ij}^{q_{LL}} = \frac{\Delta_{ij}^{\tilde{q}_{LL}}}{\frac{1}{6} \sum_s M_{\tilde{q}_{ss}}^2}, \quad q = u, d \]
Flavor and SUSY GUT

Linking quarks to neutrinos: Flavor mixing:
quarks: Cabibbo-Kobayashi-Maskawa (CKM) matrix
leptons: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Consider $SU(5)$ multiplets:

\[
\begin{align*}
\bar{5}_1 &= \begin{pmatrix}
d^c_R \\
d^c_R \\
d^c_R \\
e_L \\
-\nu_e
\end{pmatrix}, & \quad \bar{5}_2 &= \begin{pmatrix}
s^c_R \\
s^c_R \\
\mu_L \\
-\nu_\mu
\end{pmatrix}, & \quad \bar{5}_3 &= \begin{pmatrix}
b^c_R \\
b^c_R \\
\tau_L \\
-\nu_\tau
\end{pmatrix}.
\end{align*}
\]

If the observed large atmospheric neutrino mixing angle stems from a rotation of $\bar{5}_2$ and $\bar{5}_3$, it will induce a large $\tilde{b}_R - \tilde{s}_R$-mixing (Moroi; Chang, Masiero, Murayama).

⇒ new $b_R - s_R$ transitions from gluino–squark loops possible.
Key ingredients: Some weak basis with

$$Y_d = V_{\text{CKM}}^* \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} U_{\text{PMNS}}$$

and right-handed down squark mass matrix:

$$m_{\tilde{d}}^2 (M_Z) = \text{diag} \left(m_{\tilde{d}}^2, m_{\tilde{d}}^2, m_{\tilde{d}}^2 - \Delta_{\tilde{d}} \right).$$

with a calculable real parameter $\Delta_{\tilde{d}}$, typically generated by top-Yukawa RG effects.
Rotating Y_d to diagonal form puts the large atmospheric neutrino mixing angle into m_{d}^2:

$$U_{PMNS}^\dagger m_{d}^2 U_{PMNS} = \begin{pmatrix} m_{d}^2 & 0 & 0 \\ 0 & m_{d}^2 - \frac{1}{2} \Delta_{\tilde{d}} & -\frac{1}{2} \Delta_{\tilde{d}} e^{i\xi} \\ 0 & -\frac{1}{2} \Delta_{\tilde{d}} e^{-i\xi} & m_{\tilde{d}}^2 - \frac{1}{2} \Delta_{\tilde{d}} \end{pmatrix}$$

The CP phase ξ affects $B_s - \bar{B_s}$ mixing!
The Chang–Masiero–Murayama (CMM) model is based on the symmetry breaking chain
\[\text{SO}(10) \rightarrow \text{SU}(5) \rightarrow \text{SU}(3) \times \text{SU}(2)_L \times \text{U}(1)_Y. \]
The Chang–Masiero–Murayama (CMM) model is based on the symmetry breaking chain
\[\text{SO}(10) \rightarrow \text{SU}(5) \rightarrow \text{SU}(3) \times \text{SU}(2)_L \times \text{U}(1)_Y. \]

\[\text{SO}(10) \text{ superpotential:} \]

\[W_Y = \frac{1}{2} 16_i Y_{ij}^{16} 16_j 10_H + \frac{1}{2} 16_i Y_{ij}^{16} 16_j \frac{45_H 10'_H}{M_{\text{Pl}}} \]

\[+ \frac{1}{2} 16_i Y_{ij}^{16} 16_j \frac{16_H 16_H}{M_{\text{Pl}}} \]

with the Planck mass \(M_{\text{Pl}} \) and
- \(16_i \): one matter superfield per generation, \(i = 1, 2, 3 \),
- \(10_H \): Higgs superfield containing MSSM Higgs superfield \(H_u \),
- \(10'_H \): Higgs superfield containing MSSM superfield \(H_u \),
- \(45_H \): Higgs superfield in adjoint representation,
- \(16_H \): Higgs superfield in spinor representation.
“Most minimal flavor violation”
The Yukawa matrices Y_u and Y_N are always symmetric. In the CMM model they are assumed to be simultaneously diagonalizable at the scale M_{Pl}, where the soft SUSY-breaking terms are universal.
Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \rightarrow s_R$ into $b_R \rightarrow d_R$ transitions. This “leakage” is strongly constrained by $K - \bar{K}$ mixing.

Trine, Wiesenfeldt, Westhoff 2009
Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \rightarrow s_R$ into $b_R \rightarrow d_R$ transitions. This “leakage” is strongly constrained by $K - \bar{K}$ mixing. Trine, Wiesenfeldt, Westhoff 2009

Similar constraints can be found from $\mu \rightarrow e\gamma$. Ko, Park, Yamaguchi 2008; Borzumati, Yamashita 2009; Girrbach, Mertens, UN, Wiesenfeldt 2009.
Chang-Masiero-Murayama model

We have considered $B_s - \overline{B}_s$ mixing, $b \rightarrow s\gamma$, $\tau \rightarrow \mu\gamma$, vacuum stability bounds, lower bounds on sparticle masses and the mass of the lightest Higgs boson. The analysis involves 7 parameters in addition to those of the Standard Model.

Generic results: Largest effect in $B_s - \overline{B}_s$ mixing tension with $M_h \geq 114$ GeV

J. Girrbach, S. Jäger, M. Knopf, W. Martens, UN, C. Scherrer, S. Wiesenfeldt

1101.6047
Methodology:

Input:

- squark masses $M_{\tilde{u}}, M_{\tilde{d}}$ of right-handed up and down squarks,
- trilinear term a_{1}^{d} of first generation,
- gluino mass $m_{\tilde{g}_{3}}$,
- $\arg \mu$,
- $\tan \beta$
Methodology:

Input:

- squark masses $M_{\tilde{u}}, M_{\tilde{d}}$ of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass $m_{\tilde{g}_3}$,
- $\arg \mu$,
- $\tan \beta$

RG evolution from M_{ew} to M_{Pl}: find universal soft terms $a_0, m_0, m_{\tilde{g}}$ and D.
Methodology:

Input:

- squark masses $M_{\tilde{u}}, M_{\tilde{d}}$ of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass $m_{\tilde{g}_3}$,
- $\arg \mu$,
- $\tan \beta$

RG evolution from M_{ew} to M_{Pl}: find universal soft terms a_0, m_0, $m_{\tilde{g}}$ and D.

RG evolution back to M_{ew}: calculate $|\mu|$ from electroweak symmetry breaking
Methodology:

Input:

- squark masses $M_{\tilde{u}}, M_{\tilde{d}}$ of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass $m_{\tilde{g}_3}$,
- $\arg \mu$,
- $\tan \beta$

RG evolution from M_{ew} to M_{Pl}: find universal soft terms $a_0, m_0, m_{\tilde{g}}$ and D.

RG evolution back to M_{ew}: calculate $|\mu|$ from electroweak symmetry breaking

Repeat RG evolution $M_{\text{ew}} \rightarrow M_{\text{Pl}} \rightarrow M_{\text{ew}}$: find all particle masses and MSSM couplings
Methodology:

Input:

- squark masses $M_{\tilde{u}}, M_{\tilde{d}}$ of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass $m_{\tilde{g}_3}$,
- arg μ,
- $\tan \beta$

RG evolution from M_{ew} to M_{Pl}: find universal soft terms a_0, m_0, $m_{\tilde{g}}$ and D.

RG evolution back to M_{ew}: calculate $|\mu|$ from electroweak symmetry breaking

Repeat RG evolution $M_{\text{ew}} \rightarrow M_{\text{Pl}} \rightarrow M_{\text{ew}}$: find all particle masses and MSSM couplings

adjust CP phase ξ to approximate experimental Δ_s best.
$m_{g_3} = 500 \text{ GeV, } \mu > 0, \tan \beta = 6$

Black: negative soft masses
Gray blue: excluded by $\tau \to \mu \gamma$
Medium blue: excluded by $b \to s\gamma$
Dark blue: excluded by $B_s - \bar{B}_s$ mixing
Green: allowed

solid lines: $10^4 \cdot Br(b \to s\gamma)$; dashed lines: $10^8 \cdot Br(\tau \to \mu \gamma)$.
$m_{\tilde{g}_3} = 500 \text{ GeV}, \mu > 0, \tan \beta = 6$

gray labels: ϕ_s in degrees
white labels: M_h.
It is easy to accommodate the large values of $|\phi_s|$ seen in the data.

For $\tan \beta = 3$ the bound $M_h \geq 114 \text{ GeV}$ is violated.
Origin of the **SUSY flavor problem**: Misalignment of squark mass matrices with Yukawa matrices. Unorthodox solution: Set Y_{ij}^u and Y_{ij}^d to zero, except for $(i, j) = (3, 3)$.

$$\Rightarrow \text{ No flavor violation from } Y_{ij}^{u,d} \text{ and } V_{\text{CKM}} = 1.$$
Radiative Flavor Violation

Origin of the **SUSY flavor problem**: Misalignment of squark mass matrices with Yukawa matrices.

Unorthodox solution: Set Y^u_{ij} and Y^d_{ij} to zero, except for $(i,j) = (3,3)$.

\Rightarrow No flavor violation from $Y^{u,d}_{ij}$ and $V_{\text{CKM}} = 1$.

$V_{\text{CKM}} \neq 1$ is then generated radiatively, through finite squark-gluino loops.

\Rightarrow **SUSY-breaking is the origin of flavor.**
Radiative Flavor Violation

Origin of the SUSY flavor problem: Misalignment of squark mass matrices with Yukawa matrices.

Unorthodox solution: Set Y_{ij}^u and Y_{ij}^d to zero, except for $(i, j) = (3, 3)$.

\Rightarrow No flavor violation from $Y_{ij}^{u,d}$ and $V_{\text{CKM}} = 1$.

$V_{\text{CKM}} \neq 1$ is then generated radiatively, through finite squark-gluino loops.

\Rightarrow SUSY-breaking is the origin of flavor.

Radiative flavor violation: S. Weinberg 1972

flavor from soft SUSY terms:

W. Buchmüller, D. Wyler 1983,
F. Borzumati, G.R. Farrar,
N. Polonsky, S.D. Thomas 1998, 1999
J. Ferrandis, N. Haba 2004
Today:

Strong constraints from FCNCs probed at B factories.
Today:

Strong constraints from FCNCs probed at B factories.

But: Radiative flavor violation in the MSSM is still viable, albeit only with A_{ij}^d and A_{ij}^u entering

$$M_{ij}^{\tilde{d}}_{LR} = A_{ij}^d v_d + \delta_{i3} \delta_{j3} y_{b\mu} v_u, \quad M_{ij}^{\tilde{u}}_{LR} = A_{ij}^u v_u + \delta_{i3} \delta_{j3} y_{t\mu} v_d.$$

Requires heavy sparticles, with squark masses around or above 1 TeV.

Andreas Crivellin, UN, PRD 79 (2009) 035018
Corrections to Yukawa couplings from A_{ij}^d:
If all flavor violation is generated from A^d_{ij}, there are correlated effects in $B(B_S \to \mu^+\mu^-)$ and $B_s - \bar{B}_s$ mixing:

Here $\tan \beta = 11$ and $M_{H^0} \simeq M_{A^0} = 400$ GeV. V_{23}^R parametrizes the $s_R \to b_L$ self-energy as $V_{23}^R \equiv \Sigma(s_R \to b_L)/m_b$.

Crivellin, Hofer, UN, Scherer, 1105.2818
The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \rightarrow J/\psi \phi$ data of DØ, CDF and LHCb.
Conclusions

• The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \rightarrow J/\psi \phi$ data of DØ, CDF and LHCb.

• A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^\Delta < 0$, driven by $B(B^+ \rightarrow \tau^+ \nu_\tau)$ (and possibly ϵ_K). In a simultaneously global fit to the UT and the $B_s - \bar{B}_s$ mixing complex a plausible picture of new CP-violating physics emerges.
• Large CP-violating contributions to $B_s - \bar{B}_s$ mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed the DØ/CDF results imply physics beyond the CMSSM and mSUGRA. We need “controlled” deviations from minimal flavor violation.
Conclusions

- Large CP-violating contributions to $B_s - \bar{B}_s$ mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed the DØ/CDF results imply physics beyond the CMSSM and mSUGRA. We need “controlled” deviations from minimal flavor violation.

- Models of GUT flavor physics with $\tilde{b}_R - \tilde{s}_R$ mixing driven by the atmospheric neutrino mixing angle can explain the Tevatron data on $B_s - \bar{B}_s$ mixing without conflicting with $b \to s\gamma$ and $\tau \to \mu\gamma$.
Conclusions

- Large CP-violating contributions to $B_s - \overline{B}_s$ mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed the DØ/CDF results imply physics beyond the CMSSM and mSUGRA. We need “controlled” deviations from minimal flavor violation.

- Models of GUT flavor physics with $\tilde{b}_R - \tilde{s}_R$ mixing driven by the atmospheric neutrino mixing angle can explain the Tevatron data on $B_s - \overline{B}_s$ mixing without conflicting with $b \to s\gamma$ and $\tau \to \mu\gamma$.

- The MSSM with radiative flavor violation permits sizable effects in $B(B_s \to \mu^+\mu^-)$ and $B_s - \overline{B}_s$ mixing, but requires $\mathcal{O}(\text{TeV})$ squark and gluino masses.
A pinch of new physics in $B - \overline{B}$ mixing?