Low Energy Probes of CP Violation in Supersymmetric Models

Wolfgang Altmannshofer

Fermilab

Theory Seminar

February 3, 2011
1 Introduction

2 CP Violation in B_s Mixing

3 Phenomenology of CP Violation in SUSY Models
 - Low Energy Probes of CPV in the MSSM with MFV
 - The B_s Mixing Phase in SUSY Models Beyond MFV
 - CPV in D^0 Mixing and EDMs in SUSY Alignment Models

4 Summary
CKM matrix is the only source of flavor and CP violation in the SM

very good overall agreement of the exp. data entering the CKM fits (apart from a 2-3σ discrepancy between sin 2β and BR(B → τν))

how much room is left for additional sources of flavor violation?
$L_{\text{eff}} = L_{\text{SM}} + \sum_{i,j} \frac{c_{ij}}{\Lambda^2} O_{ij}^{(6)}$

<table>
<thead>
<tr>
<th>Operator</th>
<th>Bound on Λ in TeV ($c_{ij} = 1$)</th>
<th>Bound on c_{ij} (A = 1 TeV)</th>
<th>Observables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Re</td>
<td>Im</td>
<td>Re</td>
</tr>
<tr>
<td>$(\bar{s}_L \gamma^\mu d_L)^2$</td>
<td>9.8×10^2</td>
<td>1.6×10^4</td>
<td>9.0×10^{-7}</td>
</tr>
<tr>
<td>$(\bar{s}_R d_L)(\bar{s}_L d_R)$</td>
<td>1.8×10^4</td>
<td>3.2×10^5</td>
<td>6.9×10^{-9}</td>
</tr>
<tr>
<td>$(\bar{c}_L \gamma^\mu u_L)^2$</td>
<td>1.2×10^3</td>
<td>2.9×10^3</td>
<td>5.6×10^{-7}</td>
</tr>
<tr>
<td>$(\bar{c}_R u_L)(\bar{c}_L u_R)$</td>
<td>6.2×10^3</td>
<td>1.5×10^4</td>
<td>5.7×10^{-8}</td>
</tr>
<tr>
<td>$(\bar{b}_L \gamma^\mu d_L)^2$</td>
<td>5.1×10^2</td>
<td>9.3×10^2</td>
<td>3.3×10^{-6}</td>
</tr>
<tr>
<td>$(\bar{b}_R d_L)(\bar{b}_L d_R)$</td>
<td>1.9×10^3</td>
<td>3.6×10^3</td>
<td>5.6×10^{-7}</td>
</tr>
<tr>
<td>$(\bar{b}_L \gamma^\mu s_L)^2$</td>
<td>1.1×10^2</td>
<td></td>
<td>7.6×10^{-5}</td>
</tr>
<tr>
<td>$(\bar{b}_R s_L)(\bar{b}_L s_R)$</td>
<td>3.7×10^2</td>
<td></td>
<td>1.3×10^{-5}</td>
</tr>
</tbody>
</table>

Isidori, Nir, Perez ’10

- a generic flavor structure c_{ij} requires a very high NP scale Λ
- NP at the natural TeV scale needs a highly non-generic flavor structure
processes strongly suppressed in the SM and not measured yet (or only poorly measured) → **Discovery Channels**
processes strongly suppressed in the SM and not measured yet (or only poorly measured) → **Discovery Channels**

CP violation in $D^0 - \bar{D}^0$ mixing

- time dep. CP asymmetries S_f^D
- semi leptonic asymmetry a_{SL}^D
processes strongly suppressed in the SM and not measured yet (or only poorly measured) → Discovery Channels

CP violation in $D^0 - \bar{D}^0$ mixing
- time dep. CP asymmetries S_f^D
- semi leptonic asymmetry a_{SL}^D

Electric Dipole Moments
- of the electron d_e
- of hadronic systems d_n, d_{Hg}
processes strongly suppressed in the SM and not measured yet (or only poorly measured) → *Discovery Channels*

CP violation in $D^0 - \bar{D}^0$ mixing
- time dep. CP asymmetries S_f^D
- semi leptonic asymmetry a_{SL}^D

Electric Dipole Moments
- of the electron d_e
- of hadronic systems d_n, d_{Hg}

(very) rare decays
- $B_{s,d} \rightarrow \mu^+ \mu^-$ (LHCb)
- $B \rightarrow K^{(*)} \nu \bar{\nu}$ (superB)
- $K \rightarrow \pi \nu \bar{\nu}$ (NA62, KOTO)
processes strongly suppressed in the SM and not measured yet (or only poorly measured) → **Discovery Channels**

CP violation in $D^0 - \bar{D}^0$ mixing
- time dep. CP asymmetries S^D_t
- semi leptonic asymmetry a^D_{SL}

Electric Dipole Moments
- of the electron d_e
- of hadronic systems d_n, d_{Hg}

(very) rare decays
- $B_{s,d} \rightarrow \mu^+ \mu^-$ (LHCb)
- $B \rightarrow K^{(*)} \nu \bar{\nu}$ (superB)
- $K \rightarrow \pi \nu \bar{\nu}$ (NA62, K0TO)

CP Violation in $b \rightarrow s$ transitions
- B_s mixing phase, $S_{\psi\phi}$, a_{SL}^s (LHCb)
- direct CP asymmetry in $B \rightarrow X_s \gamma$
 $A_{CP}(b \rightarrow s \gamma)$ (superB)
- time dependent CP asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$
 $S_{\phi K_S}$ and $S_{\eta' K_S}$ (superB)
- angular observables in $B \rightarrow K^{*} \ell^+ \ell^-$ (LHCb, superB)
Evidence for New Physics?

D0, arXiv:1005.2757:
Evidence for an anomalous like-sign dimuon charge asymmetry

Definition:

\[A_{SL}^b = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}} \]

- \(N_{b}^{++} \): Number of same sign \(\mu^+ \mu^+ \) events from \(B \to \mu X \) decays
- \(N_{b}^{--} \): Number of same sign \(\mu^- \mu^- \) events from \(B \to \mu X \) decays

3.2\(\sigma \) discrepancy between SM prediction and recent D0 measurement

\[A_{SL}^b (\text{SM}) = \left(-0.23^{+0.05}_{-0.06} \right) \times 10^{-3} \]

(Lenz, Nierste '06)

\[A_{SL}^b (\text{exp}) = \left(-9.57 \pm 2.51 \pm 1.46 \right) \times 10^{-3} \]

(D0, arXiv:1005.2757)
CP Violation in B_s Mixing
Schrödinger equation describing $B_s - \bar{B}_s$ mixing:

$$i\partial_t \left(\frac{B_s(t)}{\bar{B}_s(t)} \right) = \left(M^s + \frac{i}{2} \Gamma^s \right) \left(\frac{B_s(t)}{\bar{B}_s(t)} \right)$$

Three physical parameter:

$$|M^s_{12}|, \ |\Gamma^s_{12}|, \ \phi_s = -\text{arg}\left(\frac{M^s_{12}}{\Gamma^s_{12}} \right) \quad ; \quad \phi^{SM}_s \simeq 0.004$$
Schrödinger equation describing $B_s - \bar{B}_s$ mixing:

$$i\partial_t \left(\frac{B_s(t)}{\bar{B}_s(t)} \right) = \left(M^s + \frac{i}{2}\Gamma^s \right) \left(\frac{B_s(t)}{\bar{B}_s(t)} \right)$$

Three physical parameters:

$$|M^s_{12}|, \quad |\Gamma^s_{12}|, \quad \phi_s = -\text{arg} \left(\frac{M^s_{12}}{\Gamma^s_{12}} \right) \quad ; \quad \phi^\text{SM}_s \simeq 0.004$$

Observables:

- mass and width difference
 \[\Delta M_s = 2|M^s_{12}|, \quad \Delta \Gamma_s = 2|\Gamma^s_{12}| \cos \phi_s \]
- semileptonic asymmetry
 \[a^s_{\text{SL}} = \frac{\Gamma(\bar{B}_s \rightarrow \ell^+ X) - \Gamma(B_s \rightarrow \ell^- X)}{\Gamma(\bar{B}_s \rightarrow \ell^+ X) + \Gamma(B_s \rightarrow \ell^- X)} \quad , \quad a^s_{\text{SL}} = \left| \frac{\Gamma^s_{12}}{M^s_{12}} \right| \sin \phi_s = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s \]
Like-Sign Dimuon Charge Asymmetry

Definition:

\[A_{SL}^b = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}} \]

- \(N_{b}^{++} \): Number of same sign \(\mu^+ \mu^+ \) events from \(B \rightarrow \mu X \) decays
- \(N_{b}^{--} \): Number of same sign \(\mu^- \mu^- \) events from \(B \rightarrow \mu X \) decays

Relation to the semileptonic asymmetry:

\[A_{SL}^b = (0.506 \pm 0.043) a_{sl}^d + (0.494 \pm 0.043) a_{sl}^s \]

(D0, arXiv:1005.2757)
CP violation in interference between decays with and without mixing

\[
\frac{\Gamma(\bar{B}_s(t) \rightarrow \psi\phi) - \Gamma(B_s(t) \rightarrow \psi\phi)}{\Gamma(\bar{B}_s(t) \rightarrow \psi\phi) + \Gamma(B_s(t) \rightarrow \psi\phi)} = S_{\psi\phi} \sin(\Delta M_s t)
\]

in the SM, \(S_{\psi\phi} \) measures \(\beta_s \) the phase of \(V_{ts} \)

\[
S_{\psi\phi}^{SM} = \sin 2|\beta_s| \simeq 0.038 \quad , \quad V_{ts} = -|V_{ts}| e^{-i\beta_s}
\]

for a large \(B_s \) mixing phase \(\phi_s \gg 2\beta_s \), \(\phi_s^{SM} \) one has

\[
S_{\psi\phi} \simeq -\sin \phi_s
\]

model-independent relation between \(S_{\psi\phi} \) and \(a_{SL}^s \)

(Ligeti, Papucci, Perez '06; Blanke, Buras, Guadagnoli, Tarantino '06; Grossman, Nir, Perez '09)

\[
a_{SL}^s = -\frac{\Delta \Gamma_s}{\Delta M_s} \frac{S_{\psi\phi}}{\sqrt{1 - S_{\psi\phi}^2}}
\]
data from CDF and D0 on $S_{\psi\phi}$ are in rather good agreement with the SM ($\sim 1\sigma$)
The Experimental Situation

- data from CDF and D0 on $S_{\psi\phi}$ are in rather good agreement with the SM ($\sim 1\sigma$)

- recent result from D0 on the like sign dimuon charge asymmetry A_{SL}^b shows a 3.2σ deviation from the SM
 (arXiv:1005.2757 [hep-ex])

- global fits prefer large phase in B_s mixing
 (e.g. Ligeti, Papucci, Perez, Zupan '10
 Lenz, Nierste + CKMfitter '10)

\[S_{\psi\phi} \sim 0.5 \]
LHCb Potential

- significant improvement on the experimental side can be expected at LHCb both for $S_{\psi\phi}$ and a_{SL}^s
Usual Interpretation of the Experimental Data

- absorptive part Γ_{12} dominated by SM tree level decays
 \Rightarrow CP violating short distance contributions to the dispersive part M_{12}

\[
M^s_{12} = \Delta_s \left(M^s_{12} \right)_{SM}
\]

\[
\Delta M_s = \Delta M^s_{SM} |\Delta_s|
\]

\[
\Delta \Gamma_s = \Delta \Gamma^s_{SM} \cos \left(\text{Arg}(\Delta_s) \right)
\]

\[
a^s_{SL} = \text{Im} \left(\Gamma^s_{12} / \left[(M^s_{12})_{SM} \Delta_s \right] \right)
\]

\[
S_{\psi \phi} = \sin \left(2|\beta_s| - \text{Arg}(\Delta_s) \right)
\]
Large New Physics in B_s Mixing

\[M_{12}^S = \Delta_s (M_{12}^S)^{SM} \]

\[M_{12}^S = (1 + h_s e^{2i\sigma_s}) (M_{12}^S)^{SM} \]

Lenz, Nierste + CKMfitter '10

Ligeti, Papucci, Perez, Zupan '10
How to get Large NP Contributions in B_s Mixing?

- **general MSSM**
 - Ciuchini et al.; Goto et al.;
 - WA, Buras, Gori, Paradisi, Straub ’09;
 - Crivellin, Nierste ’09;
 - Ko, Park ’10; Parry ’10; ...

- **SUSY GUTs**
 - Hisano, Shimizu ’08;
 - Dutta, Mimura, Santoso ’10;
 - Buras, Paradisi, Nagai ’10; ...

- **SUSY Flavor Models**
 - WA, Buras, Gori, Paradisi, Straub ’09;
 - King ’10; ...

- **Uplifted SUSY**
 - Dobrescu, Fox, Martin ’10

- **Minimal Flavor Violation**
 - Batell, Pospelov ’10;
 - Blum, Hochberg, Nir ’10

- **2 Higgs Doublet Models**
 - Jung, Pich, Tuzon ’10;
 - Buras, Carlucci, Gori, Isidori ’10;
 - Buras, Isidori, Paradisi ’10;

- **4th Generation**
 - Hou et al.; Soni et al.;
 - Buras et al. ’10

- **Warped Extra Dimensions**
 - Blanke et al.; Neubert et al. ’09

- **Little Higgs**
 - Blanke et al.

- **Z’**
 - Barger et al. ’09, ...

- **...**
Phenomenology of CP Violation in SUSY Models
The sources of flavor violation in the MSSM are the SM Yukawa couplings and the soft SUSY breaking terms of the sfermions:

1. Yukawa couplings: Y_u, Y_d
2. soft masses: \tilde{m}_Q^2, \tilde{m}_D^2, \tilde{m}_U^2
3. trilinear couplings: \tilde{A}_u, \tilde{A}_d

They break the global $SU(3)_Q \times SU(3)_U \times SU(3)_D$ flavor symmetry of the gauge sector

They are in general independent 3×3 matrices in flavor space

In a basis where quarks have diagonal masses (super CKM basis), squark masses are not necessarily flavor diagonal

\[
M^2_{\tilde{u}} = \begin{pmatrix}
V^* (\tilde{m}_Q^2)^T V^T & -(v_d \mu^* Y_u + v_u \tilde{A}_u^*) / \sqrt{2} \\
-(v_d \mu Y_u + v_u \tilde{A}_u^*) / \sqrt{2} & \frac{\tilde{m}_U^2}{\sqrt{2}}
\end{pmatrix} + O(\nu^2)
\]

\[
M^2_{\tilde{d}} = \begin{pmatrix}
(\tilde{m}_Q^2)^T & -(v_u \mu^* Y_d + v_d \tilde{A}_d) / \sqrt{2} \\
-(v_u \mu Y_d + v_d \tilde{A}_d) / \sqrt{2} & \frac{\tilde{m}_D^2}{\sqrt{2}}
\end{pmatrix} + O(\nu^2)
\]
misalignment between up quarks and down quarks in flavor space

- **CKM matrix**

 → appears in W and Higgs charged currents and their supersymmetrized versions
misalignment between up quarks and down quarks in flavor space

- **CKM matrix**

 \[\begin{pmatrix} V & \bar{V} \end{pmatrix} \] appears in W and Higgs charged currents and their supersymmetrized versions

misalignment between quarks and squarks in flavor space

- **Mass Insertions**

 \[\begin{pmatrix} \delta_{d}^{LL} & \delta_{d}^{LR} \\ \delta_{d}^{RL} & \delta_{d}^{RR} \end{pmatrix} \]

 \[M_q^2 = \bar{m}^2 (1 + \delta_q) \]

 → most transparent treatment in the Mass Insertion Approximation

 → flavor change through mass insertions along squark propagators
Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that typically generate the dominant contributions to FCNCs.
The SUSY Flavor Problem

Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that typically generate the dominant contributions to FCNCs

- **severe constraints** on the SUSY scale \tilde{m} and the Mass Insertions δs from meson mixing and rare decays like $B \to X_s\gamma$ and $B \to X_s\ell^+\ell^-$
- for all δs of $\mathcal{O}(1)$, the SUSY scale has to be extremely high $\tilde{m} \gtrsim 10^4$ TeV
- SUSY at the TeV scale has to exhibit a highly non-generic flavor structure

\[\tan \beta = 5, \quad \tilde{m} = M_{\tilde{g}} = 500\text{GeV} \]
The SUSY Flavor Problem

Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that typically generate the dominant contributions to FCNCs

- **severe constraints** on the SUSY scale \tilde{m} and the Mass Insertions δs from meson mixing and rare decays like $B \rightarrow X_s \gamma$ and $B \rightarrow X_s \ell^+ \ell^-$

- for all δs of $\mathcal{O}(1)$, the SUSY scale has to be extremely high $\tilde{m} \gtrsim 10^4$ TeV

- SUSY at the TeV scale has to exhibit a highly non-generic flavor structure

\[
\tan \beta = 5, \quad \tilde{m} = M_{\tilde{g}} = 500 \text{GeV}
\]
The SUSY Flavor Problem

Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that typically generate the dominant contributions to FCNCs

- **severe constraints** on the SUSY scale \tilde{m} and the Mass Insertions δs from meson mixing and rare decays like $B \rightarrow X_s \gamma$ and $B \rightarrow X_s \ell^+ \ell^-$

- For all δs of $\mathcal{O}(1)$, the SUSY scale has to be extremely high $\tilde{m} \gtrsim 10^4$ TeV

- SUSY at the TeV scale has to exhibit a highly non-generic flavor structure

$$\tan \beta = 5 \ , \ \tilde{m} = M_{\tilde{g}} = 500 \text{GeV}$$
The SUSY Flavor Problem

Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that typically generate the dominant contributions to FCNCs

► severe constraints on the SUSY scale \tilde{m} and the Mass Insertions δs from meson mixing and rare decays like $B \to X_s\gamma$ and $B \to X_s\ell^+\ell^-$
► for all δs of $O(1)$, the SUSY scale has to be extremely high $\tilde{m} \gtrsim 10^4$ TeV
► SUSY at the TeV scale has to exhibit a highly non-generic flavor structure

$\tan \beta = 5, \quad \tilde{m} = M_{\tilde{g}} = 500$ GeV
Minimal Flavor Violation

Buras et al. ’00
D’Ambrosio, Giudice, Isidori, Strumia ’02

- the global $SU(3)^3$ flavor symmetry of the gauge sector is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs naturally suppressed
Minimal Flavor Violation

Buras et al. ’00
D’Ambrosio, Giudice, Isidori, Strumia ’02

- the global $SU(3)^3$ flavor symmetry of the gauge sector is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs naturally suppressed

Partial Decoupling

- **Split SUSY**
 Arkani-Hamed, Dimopoulos ’04; Giudice, Romanino ’04
- squarks are decoupled
- Effective SUSY
 Cohen, Kaplan, Nelson ’96
- hierachical sfermion spectrum, with heavy 1st and 2nd generation
Minimal Flavor Violation
Buras et al. ’00
D’Ambrosio, Giudice, Isidori, Strumia ’02
- the global $SU(3)^3$ flavor symmetry of the gauge sector is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs naturally suppressed

Alignment
Nir, Seiberg ’93
- quark and squark masses are approximately aligned
 $\delta_{ij} \ll 1$, $i \neq j$
- naturally realized in abelian flavor models

(partial) Decoupling
- Split SUSY
 Arkani-Hamed, Dimopoulos ’04; Giudice, Romanino ’04
- squarks are decoupled
- Effective SUSY
 Cohen, Kaplan, Nelson ’96
- hierarchical sfermion spectrum, with heavy 1st and 2nd generation
How to Address the SUSY Flavor Problem

Minimal Flavor Violation
Buras et al. ’00
D’Ambrosio, Giudice, Isidori, Strumia ’02
- the global $SU(3)^3$ flavor symmetry of the gauge sector is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs naturally suppressed

Alignment
Nir, Seiberg ’93
- quark and squark masses are approximately aligned
 $\delta_{ij} \ll 1$, $i \neq j$
- naturally realized in abelian flavor models

Degeneracy
Dimopoulos, Georgi ’81
- squark masses are approximately universal
 $\delta_{ij} \ll 1$
 (FCNCs suppressed by super-GIM mechanism)
- can e.g. be realized in frameworks with gauge mediated SUSY breaking or in non-abelian flavor models

(partial) Decoupling
- **Split SUSY**
 Arkani-Hamed, Dimopoulos ’04;
 Giudice, Romanino ’04
- squarks are decoupled
- **Effective SUSY**
 Cohen, Kaplan, Nelson ’96
- hierachical sfermion spectrum, with heavy 1st and 2nd generation
Minimal Flavor Violation
The MFV MSSM with CP Violating Phases

- The global $SU(3)^3$ flavor symmetry of the (MS)SM gauge sector is only broken by the SM Yukawa couplings

- The MSSM soft terms can be expanded in powers of Yukawas

$$m_Q^2 = \tilde{m}_Q^2 \left(1 + b_1 V^\dagger \hat{Y}_u^2 V + b_2 \hat{Y}_d^2 + b_3 \hat{Y}_d^2 V^\dagger \hat{Y}_u^2 V + b_3^* V^\dagger \hat{Y}_u^2 V \hat{Y}_d^2 \right)$$

$$m_U^2 = \tilde{m}_U^2 \left(1 + b_4 \hat{Y}_u^2 \right) , \quad A_u = \tilde{A}_u \left(1 + b_6 V^* \hat{Y}_d^2 V^T \right) \hat{Y}_u$$

$$m_D^2 = \tilde{m}_D^2 \left(1 + b_5 \hat{Y}_d^2 \right) , \quad A_d = \tilde{A}_d \left(1 + b_7 V^T \hat{Y}_u^2 V^* \right) \hat{Y}_d$$

- CKM matrix is the only source of flavor violation

- Flavor Changing Neutral Currents naturally suppressed
The MFV MSSM with CP Violating Phases

- the global $SU(3)^3$ flavor symmetry of the (MS)SM gauge sector is only broken by the SM Yukawa couplings
- the MSSM soft terms can be expanded in powers of Yukawas

$$m_Q^2 = \tilde{m}_Q^2 \left(1 + b_1 V^\dagger \hat{Y}_u^2 V + b_2 \hat{Y}_d^2 + b_3 \hat{Y}_d^2 V^\dagger \hat{Y}_u V + b_3^* V^\dagger \hat{Y}_u V \hat{Y}_d^2 \right)$$

$$m_U^2 = \tilde{m}_U^2 \left(1 + b_4 \hat{Y}_u^2 \right), \quad A_u = \tilde{A}_u \left(1 + b_6 V^* \hat{Y}_d^2 V^T \right) \hat{Y}_u$$

$$m_D^2 = \tilde{m}_D^2 \left(1 + b_5 \hat{Y}_d^2 \right), \quad A_d = \tilde{A}_d \left(1 + b_7 V^T \hat{Y}_u^2 V^* \right) \hat{Y}_d$$

- CKM matrix is the only source of flavor violation
- Flavor Changing Neutral Currents naturally suppressed

- additional sources of CP violation are in principle allowed!
 (M_1, M_2, $M_{\tilde{g}}$, μ, \tilde{A}_u, \tilde{A}_d, b_3, b_6, b_7)

- what is their impact on CP violation in meson mixing?
MFV Box Contributions to B_s Mixing (I)

- Leading box contributions to meson mixing are not sensitive to flavor diagonal phases! (WA, Buras, Paradisi ’08)

\[
\propto \frac{\alpha_s^2}{\tilde{m}^2} b_1^2 (V_{tb} V^*_{ts})^2
\]

\[
\propto \frac{\alpha_s^2}{\tilde{m}^2} \left(V_{tb} V^*_{ts} \right)^2
\]
MFV Box Contributions to B_s Mixing (II)

\[\propto \frac{\alpha_2^2}{\langle m^2 \rangle (V_{tb} V_{ts}^*)^2} \left[\frac{m_b^2}{\langle m^2 \rangle} \tan^2 \beta \left(\frac{\mu A_t^2}{\langle m^4 \rangle} \right) \right] \]

\[\propto \frac{\alpha_s^2}{\langle m^2 \rangle (V_{tb} V_{ts}^*)^2} \left[\frac{m_b^2}{M_W^2} \tan^2 \beta b_1 b_3 \right], \ldots \]

- CP violating contributions are suppressed by at least two powers of the bottom Yukawa Y_b^2
 (WA, Buras, Gori, Paradisi, Straub '09; Blum, Hochberg, Nir '10)

- might be relevant in the large tan β regime?
For large values of $\tan \beta$ also so-called double Higgs penguins become important (Hamzaoui, Pospelov, Toharia '98; Buras, Chankowski, Rosiek, Slawianowska '02)

$$\propto \frac{\alpha^3}{4\pi} \frac{1}{M_A^2} (V_{tb} V_{ts}^*)^2 \frac{m_b m_s}{M_W^2} \tan^4 \beta$$

$$\times \left[\frac{|\mu A_t|^2}{\tilde{m}^4}, \frac{|\mu M_{\tilde{g}}|^2}{\tilde{m}^4} (b_1 + b_3 Y_b^2)^2, \ldots \right]$$

Also no sensitivity to flavor diagonal CP phases at the leading order

Possibility to have CPV through a complex b_3
consider also higher order \(\tan \beta \) resummation factors which come from a modified relation between the fermion masses and Yukawa couplings in the large \(\tan \beta \) regime (Hall, Rattazzi, Sarid '93)

\[m_b = y_b v_d \]
consider also higher order $\tan \beta$ resummation factors which come from a modified relation between the fermion masses and Yukawa couplings in the large $\tan \beta$ regime (Hall, Rattazzi, Sarid ’93)

$$m_b = y_b v_d + y_b \epsilon_b v_u = y_b v_d (1 + \epsilon_b \tan \beta) \rightarrow y_b \simeq \frac{m_b}{v} \frac{\tan \beta}{1 + \epsilon_b \tan \beta}$$

$$\sim m_b (\epsilon_b \tilde{g} + \epsilon_b \tilde{H} + \ldots) \tan \beta$$
consider also higher order $\tan \beta$ resummation factors which come from a modified relation between the fermion masses and Yukawa couplings in the large $\tan \beta$ regime (Hall, Rattazzi, Sarid '93)

$$m_b = y_b v_d + y_b \epsilon_b v_u = y_b v_d (1 + \epsilon_b \tan \beta) \rightarrow y_b \simeq \frac{m_b}{v} \frac{\tan \beta}{1 + \epsilon_b \tan \beta}$$

$$\sim m_b (\epsilon_{\tilde{g}} + \epsilon_{\tilde{H}} + \ldots) \tan \beta$$

$$\tan^4 \beta \rightarrow \frac{\tan^4 \beta}{|1 + \epsilon_b t_\beta|^2 |1 + \epsilon^0_b t_\beta|^2}$$
consider also higher order $\tan \beta$ resummation factors which come from a modified relation between the fermion masses and Yukawa couplings in the large $\tan \beta$ regime (Hall, Rattazzi, Sarid '93)

\[m_b = y_b v_d + y_b \epsilon_b v_u = y_b v_d (1 + \epsilon_b \tan \beta) \quad \rightarrow \quad y_b \simeq \frac{m_b}{v} \frac{\tan \beta}{1 + \epsilon_b \tan \beta} \]

\[
\tan^4 \beta \rightarrow \frac{\tan^4 \beta}{|1 + \epsilon_b t_\beta|^2 |1 + \epsilon_b^0 t_\beta|^2} \times \left(\frac{1 + \epsilon_b^0 t_\beta}{1 + \epsilon_s^0 t_\beta} + \frac{\epsilon_{FC}^* (1 + \epsilon_b^0 t_\beta)}{\epsilon_{FC} (1 + \epsilon_b^0 t_\beta)^* (1 + \epsilon_s^0 t_\beta)} \right) \]

But: possible difference in ϵ_b and ϵ_s resummation factors can in principle lead to CP violation and is sensitive to flavor diagonal phases (Hofer, Nierste, Scherer '09; Dobrescu, Fox, Martin '10)
Strong Constraints from $B_s \rightarrow \mu^+ \mu^-$

$$\text{BR}(B_s \rightarrow \mu^+ \mu^-)^{\text{exp}} < 4.3 \times 10^{-8} \quad \text{CDF}$$

$$\text{BR}(B_s \rightarrow \mu^+ \mu^-)^{\text{SM}} = (3.5 \pm 0.4) \times 10^{-9}$$

\triangleright $B_s \rightarrow \mu^+ \mu^-$ amplitude is strongly helicity suppressed in the SM

\triangleright for large $\tan \beta$ huge enhancement possible (orders of magnitude)

\begin{align*}
&\sim \frac{\alpha_2}{4\pi} \frac{m_t^2}{M_W^2} \frac{1}{M_A^2} \frac{A_{t\mu}}{\tilde{m}^2} \tan^3 \beta \frac{m_b m_{\mu}}{M_W^2} V_{tb} V_{ts}^* \\
&\sim \frac{\alpha_s}{4\pi} \frac{1}{M_A^2} \frac{\mu M_{\tilde{g}}}{\tilde{m}^2} \tan^3 \beta (b_1 + Y_b^2 b_3) \frac{m_b m_{\mu}}{M_W^2} V_{tb} V_{ts}^*
\end{align*}
Strong Constraints from $b \rightarrow s\gamma$

$\text{BR}(B \rightarrow X_s\gamma)^{\text{exp}} = (3.52 \pm 0.25) \times 10^{-4}$ \hspace{1cm} HFAG

$\text{BR}(B \rightarrow X_s\gamma)^{\text{SM}} = (3.15 \pm 0.23) \times 10^{-4}$ \hspace{1cm} Misiak et al. ’06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed in the SM
- Typically large NP effects, even in MFV, in particular for large $\tan \beta$

\[C_{7,8}^{\tilde{H}} \sim \frac{\alpha_2}{4\pi} \frac{m_t^2}{M_W^2} \frac{1}{\tilde{m}^2} \frac{A_{t\mu}}{\tilde{m}^2} \tan \beta \ V_{tb} V_{ts}^* \]

\[C_{7,8}^{\tilde{g}} \sim \frac{\alpha_s}{4\pi} \frac{1}{\tilde{m}^2} \frac{\mu M_{\tilde{g}}}{\tilde{m}^2} \tan \beta \ (b_1 + \gamma Y_b^2 b_3) \ V_{tb} V_{ts}^* \]
Strong Constraints from Electric Dipole Moments

\[
\begin{align*}
 d_e^{\text{exp}} &\lesssim 1.6 \times 10^{-27} \text{ ecm} \\
 d_e^{\text{SM}} &\simeq 10^{-38} \text{ ecm}
\end{align*}
\]

\[
\begin{align*}
 d_n^{\text{exp}} &\lesssim 2.9 \times 10^{-26} \text{ ecm} \\
 d_n^{\text{SM}} &\simeq 10^{-32} \text{ ecm}
\end{align*}
\]

- In the MSSM, EDMs can be induced already at the 1loop level → tight constraints on CP violating phases of gaugino and Higgsino masses
- phases of 3rd generation trilinear couplings \(A_{t,b,\tau} \) remain basically unconstrained at 1loop
- important 2loop Barr-Zee type diagrams that involve the 3rd generation (Chang, Keung, Pilaftsis '98)

\[d_e \propto \frac{\alpha_{\text{em}}}{4\pi} \frac{m_e}{16\pi^2} \tan \beta \sum_{f=t,b,\tau} q_f^2 Y_f^2 \text{Im}(\mu A_f) \hat{m}^4\]

\[d_d^{(c)} \propto \frac{\alpha_s}{4\pi} \frac{m_d}{16\pi^2} \tan \beta \sum_{f=t,b} Y_f^2 \text{Im}(\mu A_f) \hat{m}^4\]
A Large B_s Mixing Phase in the MFV MSSM?

Result of a numerical scan

- CP violation in meson mixing is generically SM like in the MFV MSSM (WA, Buras, Gori, Paradisi, Straub '09)
- i.e. small effects in $S_{\psi\phi}$, $S_{\psi KS}$ and ϵ_K
- reason: strong constraints from $\text{BR}(B \rightarrow X_s\gamma)$ and $\text{BR}(B_s \rightarrow \mu^+\mu^-)$ and the EDMs
A Large B_s Mixing Phase in the MFV MSSM?

Result of a numerical scan

- CP violation in meson mixing is generically SM like in the MFV MSSM (WA, Buras, Gori, Paradisi, Straub '09)
- i.e. small effects in $S_{\psi\phi}$, $S_{\psi K_S}$ and ϵ_K
- reason: strong constraints from $\text{BR}(B \to X_s\gamma)$ and $\text{BR}(B_s \to \mu^+\mu^-)$ and the EDMs

- effects in $S_{\psi\phi}$ might still be possible in the uplifted SUSY region with $\tan \beta \simeq O(100 - 200)$ (Dobrescu, Fox '10; Dobrescu, Fox, Martin '10)
- But: such a scenario is strongly constrained by B physics observables, $(g - 2)_\mu$ and EDMs (WA, Straub '10)
The MFV principle is intended to naturally suppress FCNC effects.

Naturally, large NP effects only show up in helicity suppressed processes:

\[B_{s,d} \rightarrow \mu^+ \mu^- , \quad B^+ \rightarrow \tau^+ \nu \]

\[b \rightarrow s \gamma \]
The MFV principle is intended to naturally suppress FCNC effects.

Naturally, large NP effects only show up in helicity suppressed processes:

\[B_{s,d} \rightarrow \mu^+ \mu^- , \quad B^+ \rightarrow \tau^+ \nu \]

\[b \rightarrow s\gamma \]

Best low energy probes of CP Violation in the MFV MSSM are EDMs and observables sensitive to CPV in the \(b \rightarrow s\gamma \) transition (WA, Buras, Paradisi ’08):

\[\rightarrow \text{direct CP asymmetry in } B \rightarrow X_s\gamma, \ A_{CP}^{bs\gamma} \]
The MFV principle is intended to naturally suppress FCNC effects.

Naturally, large NP effects only show up in helicity suppressed processes:

\[B_{s,d} \rightarrow \mu^+ \mu^-, \quad B^+ \rightarrow \tau^+ \nu \]

\[b \rightarrow s\gamma \]

Best low energy probes of CP Violation in the MFV MSSM are EDMs and observables sensitive to CPV in the \(b \rightarrow s\gamma \) transition (WA, Buras, Paradisi ’08):

- direct CP asymmetry in \(B \rightarrow X_s \gamma \), \(A_{CP}^{bs\gamma} \)
- time dependent CP asymmetries in \(B \rightarrow \phi K_S \) and \(B \rightarrow \eta' K_S \), \(S_{\phi K_S} \) and \(S_{\eta' K_S} \)
The MFV principle is intended to naturally suppress FCNC effects.

Naturally, large NP effects only show up in helicity suppressed processes:

\[B_{s,d} \to \mu^+ \mu^- , \ B^+ \to \tau^+ \nu \]

\[b \to s \gamma \]

Best low energy probes of CP Violation in the MFV MSSM are EDMs and observables sensitive to CPV in the \[b \to s \gamma \] transition (WA, Buras, Paradisi '08):

\[\to \text{direct CP asymmetry in } B \to X_s \gamma, \ A_{CP}^{bs \gamma} \]

\[\to \text{time dependent CP asymmetries in } B \to \phi K_S \text{ and } B \to \eta' K_S, \ S_{\phi K_S} \text{ and } S_{\eta' K_S} \]

\[\to \text{angular observables in } B \to K^* \ell^+ \ell^- \]
\(S_{\phi K_S} \) and \(S_{\eta/\eta' K_S} \) can simultaneously be brought in agreement with the data

- sizeable and correlated effects in
 \[A_{CP}(b \rightarrow s\gamma) \simeq 0\%-5\% \]

- for \(S_{\phi K_S} \simeq 0.4 \) lower bounds on the electron and neutron EDMs at the level of
 \(d_{e,n} \gtrsim 10^{-28} \text{ ecm} \)

- large and characteristic effects in the CP asymmetries in \(B \rightarrow K^{*}\mu^+\mu^- \)
 (WA, Ball, Bharucha, Buras, Straub, Wick '08)
S_{\phi K_S} and S_{\eta' K_S} can simultaneously be brought in agreement with the data

- sizeable and correlated effects in $A_{CP}(b \rightarrow s \gamma) \simeq 0\% - 5\%$
- for $S_{\phi K_S} \simeq 0.4$ lower bounds on the electron and neutron EDMs at the level of $d_{e,n} \gtrsim 10^{-28}$ ecm
- large and characteristic effects in the CP asymmetries in $B \rightarrow K^* \mu^+ \mu^-$

(WA, Ball, Bharucha, Buras, Straub, Wick '08)

A combined study of all these observables and their correlations constitutes a very powerful test of the MFV MSSM with CPV phases.
The B_s Mixing Phase
Beyond MFV
Gluino Box Contributions to B_s Mixing (I)

\[\propto \frac{\alpha_s^2}{\tilde{m}^2} \left(\delta_d^{LL} \right)_{32} \left(\delta_d^{RR} \right)_{32} \left(\bar{b} P_L s \right) \left(\bar{b} P_R s \right) \]

\[\propto \frac{\alpha_s^2}{\tilde{m}^2} \left(\delta_d^{LL} \right)_{32} \left(\bar{b} \gamma_\mu P_L s \right)^2 \]

\[\propto \frac{\alpha_s^2}{\tilde{m}^2} \left(\delta_d^{RR} \right)_{32} \left(\bar{b} \gamma_\mu P_R s \right)^2 \]

- color and RGE enhancement if $\left(\delta_d^{LL} \right)_{32}$ and $\left(\delta_d^{RR} \right)_{32}$ present simultaneously
Gluino Box Contributions to B_S Mixing (II)

$\tan \beta = 5$, $\tilde{m} = M_{\tilde{g}} = 500\text{GeV}$

- Large effects in $S_{\psi \phi}$ possible for $O(1)$ RR or LL mass insertions
- If LL and RR insertions are present simultaneously, large effects in $S_{\psi \phi}$ can be generated even for moderate mass insertions
Double Penguins in Presence of \((\delta_{d}^{RR})_{32} \)

\[
\sim \frac{\alpha_2}{4\pi} \frac{\alpha_s^2}{M_A^2} \frac{m_b^2}{M_W^2} \tan^4 \beta \frac{\mu^2 M_{\tilde{g}}^2}{\tilde{m}^4} (\delta_{d}^{LL})_{32} (\delta_{d}^{RR})_{32}
\]

\[
\sim \frac{\alpha_s}{4\pi} \frac{\alpha_2^2}{M_A^2} \frac{m_b^2}{M_W^2} \tan^4 \beta \frac{\mu^2 A_t M_{\tilde{g}}}{\tilde{m}^4} V_{tb} V_{ts}^* (\delta_{d}^{RR})_{32}
\]

- **proportionality to** \(m_b^2 \) **due to the presence of flavor changing right-handed currents** (remember: in MFV \(\propto m_b m_s \))

- **very important contributions from double penguins** for large \(\tan \beta \) in presence of a \((\delta_{d}^{RR})_{32} \) mass insertion
A Large B_s Mixing Phase Beyond MFV

- A $(\delta^L_d)_{32}$ mass insertion of $O(\lambda^2)$ is always induced radiatively.

→ Models that predict a sizable $(\delta^R_d)_{32}$ mass insertion are frameworks where a large B_s mixing phase can naturally be generated.
A Large B_s Mixing Phase Beyond MFV

- A $(\delta^{LL}_{d})_{32}$ mass insertion of $O(\lambda^2)$ is always induced radiatively

- models that predict a sizable $(\delta^{RR}_{d})_{32}$ mass insertion are frameworks where a large B_s mixing phase can naturally be generated

There are many SUSY models where sizable $(\delta^{RR}_{d})_{32}$ mass insertions can be expected

- **abelian flavor models**
 Nir, Seiberg '93; Nir, Raz '02; Agashe, Carone '03; . . .

- **non-abelian flavor models**
 Barbieri, Hall, Romanino '97; Carone, Hall, Moroi '97; . . .
 Ross, Velasco-Sevilla, Vives '04; Antusch, King, Malinsky '07; . . .

- **SUSY GUTs**
 Chang, Masiero, Murayama '02; . . .
Concrete Example: A non-abelian Flavor Model

Example: Ross, Velasco-Sevilla, Vives ’04 (RVV)
- non-abelian flavor model based on $SU(3)$
- 1^{st} and 2^{nd} generation of squarks approximately degenerate

\[
(\delta^L_d) \sim \begin{pmatrix}
\lambda^4 & \lambda^5 & \lambda^3 \\
\lambda^5 & \lambda^4 & \lambda^2 \\
\lambda^3 & \lambda^2 & 1
\end{pmatrix}
\]

\[
(\delta^R_d) \sim \begin{pmatrix}
\lambda^3 & \lambda^4 & \lambda^3 \\
\lambda^4 & \lambda^3 & \lambda \\
\lambda^3 & \lambda & 1
\end{pmatrix}
\]

Expected phenomenology:
- Moderate effects in $b \to d$ and $s \to d$ transitions (strongest constraint from ϵ_K)
- Small effects in $D_0 - \bar{D}_0$ mixing
- Sizeable effects in $B_s - \bar{B}_s$ mixing
Concrete Example: A non-abelian Flavor Model

Example: Ross, Velasco-Sevilla, Vives ’04 (RVV)

- non-abelian flavor model based on $SU(3)$
- 1st and 2nd generation of squarks approximately degenerate

\[
(\delta^{LL}_d) \sim \begin{pmatrix}
\lambda^4 & \lambda^5 & \lambda^3 \\
\lambda^5 & \lambda^4 & \lambda^2 \\
\lambda^3 & \lambda^2 & 1
\end{pmatrix}
\]

\[
(\delta^{RR}_d) \sim \begin{pmatrix}
\lambda^3 & \lambda^4 & \lambda^3 \\
\lambda^4 & \lambda^3 & \lambda \\
\lambda^3 & \lambda & 1
\end{pmatrix}
\]

Expected phenomenology:

- Moderate effects in $b \rightarrow d$ and $s \rightarrow d$ transitions (strongest constraint from ϵ_K)
- Small effects in $D_0-\bar{D}_0$ mixing
- Sizeable effects in $B_s-\bar{B}_s$ mixing

- a large $S_{\psi\phi}$ can be accommodated for in this model
- strong (model independent) correlation with the semileptonic asymmetry a^s_{SL}
 (Ligeti, Papucci, Perez ’06 Grossman, Nir, Perez ’09)
Concrete Example: An Abelian Flavor Model

Example: Agashe, Carone ’03 (AC)

- abelian flavor model based on a $U(1)$ horizontal symmetry
- “remarkable level of alignment”

\[
\begin{align*}
(\delta_d^{LL}) & \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \\ 0 & \lambda^2 & 1 \end{pmatrix} \\
(\delta_d^{RR}) & \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\end{align*}
\]

Expected phenomenology:

- small effects in $b \rightarrow d$ and $s \rightarrow d$ transitions
- large effects in $D_0 - \bar{D}_0$ mixing (generic for abelian models)
- large effects in $B_s - \bar{B}_s$ mixing
Concrete Example: An Abelian Flavor Model

Example: Agashe, Carone ’03 (AC)

- abelian flavor model based on a $U(1)$ horizontal symmetry
- “remarkable level of alignment”

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & \lambda^2 \\
0 & \lambda^2 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}
\]

Expected phenomenology:
- small effects in $b \to d$ and $s \to d$ transitions
- large effects in $D_0 - \bar{D}_0$ mixing (generic for abelian models)
- large effects in $B_s - \bar{B}_s$ mixing

- a large $S_{\psi\phi}$ can easily be accommodated for in this model
- strong (model independent) correlation with the semileptonic asymmetry a_{SL}^s
Concrete Example: An Abelian Flavor Model

Example: Agashe, Carone ’03 (AC)

- abelian flavor model based on a $U(1)$ horizontal symmetry
- “remarkable level of alignment”

\[
(\delta^L_d) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \\ 0 & \lambda^2 & 1 \end{pmatrix}
\]

\[
(\delta^R_d) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\]

Expected phenomenology:

- small effects in $b \rightarrow d$ and $s \rightarrow d$ transitions
- large effects in $D_0 - \bar{D}_0$ mixing (generic for abelian models)
- large effects in $B_s - \bar{B}_s$ mixing

- a large $S_{\psi \phi}$ can easily be accommodated for in this model
- strong (model independent) correlation with the semileptonic asymmetry a_{SL}^s
- double penguins dominate ⇒ lower bound on $\text{BR}(B_s \rightarrow \mu^+ \mu^-)$ at the level of 10^{-8} (WA, Buras, Gori, Paradisi, Straub ’09)
CPV in D^0 Mixing and EDMs in SUSY Alignment Models
$SU(2)_L$ invariance implies a relation between LL mass insertions in the up and down sector

$$ (\delta^{LL}_u) = V^* (\delta^{LL}_d) V^T $$

$$ (\delta^{LL}_u)_{21} = (\delta^{LL}_d)_{21} + \lambda \left(\frac{m^2_{\tilde{c}_L}}{\tilde{m}^2} - \frac{m^2_{\tilde{u}_L}}{\tilde{m}^2} \right) $$

- abelian flavor models that realize the alignment mechanism ensure $(\delta^{LL}_d) \simeq 0$

- irreducible flavor violating term $(\delta^{LL}_u)_{21} \sim \lambda$ in the up sector for natural $\mathcal{O}(1)$ splitting of squark masses
SU(2)\textsubscript{L} invariance implies a relation between LL mass insertions in the up and down sector

\[(\delta^{LL}_u) = V^*(\delta^{LL}_d)V^T \]

\[(\delta^{LL})_{21} = (\delta^{LL}_d)_{21} + \lambda \left(\frac{m^2_{cL}}{\tilde{m}^2} - \frac{m^2_{uL}}{\tilde{m}^2} \right) \]

- abelian flavor models that realize the alignment mechanism ensure \((\delta^{LL}_d) \simeq 0\)
- irreducible flavor violating term \((\delta^{LL}_u)_{21} \sim \lambda\) in the up sector for natural \(\mathcal{O}(1)\) splitting of squark masses

\begin{align*}
\text{immediate consequence: } & \text{Large NP effects in } D^0 - \bar{D}^0 \text{ mixing} \\
& \text{(Nir, Seiberg '93)}
\end{align*}

- already for tiny complex \(\delta^{RR}_u \sim \lambda^3\) large CP violation in \(D^0 - \bar{D}^0\) mixing

\[\text{Im } M^D_{12} \propto \text{Im} \left[(\delta^{LL}_u)_{21} (\delta^{RR}_u)_{21} \right] \]

- current experimental bounds are easily reached
a complex \((\delta^R_u)_{21}\) leads also to a up quark EDM by means of flavor effects

\[
d_u^{(c)} \propto \text{Im} \left[(\delta^L_u)_{21} (\delta^R_u)_{21} \right]
\]

suppression by small mass insertions, but chiral enhancement by \(m_c/m_u\)

the up quark EDM leads in turn to EDMs e.g. of the neutron and of mercury
Correlation with Electric Dipole Moments

- A complex \((\delta_{u}^{RR})_{21}\) leads also to a up quark EDM by means of flavor effects

\[
d_u^{(c)} \propto \text{Im} \left[(\delta_{u}^{LL})_{21}(\delta_{u}^{RR})_{21} \right]
\]

- Suppression by small mass insertions, but chiral enhancement by \(m_c/m_u\)

- The up quark EDM leads in turn to EDMs e.g. of the neutron and of mercury

- Large CP violation in \(D^0 - \bar{D}^0\) mixing in abelian flavor models implies lower bounds on hadronic EDMs (WA, Buras, Paradisi ’10)

\[
d_n \gtrsim 10^{-(28-29)} e\text{ cm}
\]
\[
d_{\text{Hg}} \gtrsim 10^{-(30-31)} e\text{ cm}
\]

- Interesting level for expected future experimental resolutions
MSSM with Minimal Flavor Violation

non-MFV MSSM frameworks with sizable $(\delta_d^{RR})_{32}$ mass insertions

SUSY alignment models
MSSM with Minimal Flavor Violation

→ CP violation in $\Delta F = 2$ transitions remains generically SM like
 (in particular: small effects in the B_s mixing phase)
→ best low energy probes of CP violation are
 EDMs and observables sensitive to CPV in the $b \to s\gamma$ transition

non-MFV MSSM frameworks with sizable $(\delta_{d}^{RR})_{32}$ mass insertions

SUSY alignment models
MSSM with Minimal Flavor Violation

- CP violation in $\Delta F = 2$ transitions remains generically SM like (in particular: small effects in the B_s mixing phase)
- best low energy probes of CP violation are EDMs and observables sensitive to CPV in the $b \rightarrow s\gamma$ transition

non-MFV MSSM frameworks with sizable $(\delta_{d}^{RR})_{32}$ mass insertions

- large NP effects in B_s mixing are naturally generated through flavor changing right handed currents
- in the large $\tan \beta$ regime, strong correlation between B_s mixing and the rare decay $B_s \rightarrow \mu^+\mu^-$

SUSY alignment models
MSSM with Minimal Flavor Violation
→ CP violation in $\Delta F = 2$ transitions remains generically SM like
 (in particular: small effects in the B_s mixing phase)
→ best low energy probes of CP violation are
 EDMs and observables sensitive to CPV in the $b \rightarrow s\gamma$ transition

non-MFV MSSM frameworks with sizable $(\delta_{d}^{RR})_{32}$ mass insertions
→ large NP effects in B_s mixing are naturally generated through
 flavor changing right handed currents
→ in the large $\tan \beta$ regime, strong correlation between B_s mixing
 and the rare decay $B_s \rightarrow \mu^+\mu^-$

SUSY alignment models
→ genericall large effects in $D^0 - \bar{D}^0$ mixing
→ CP Violation in $D^0 - \bar{D}^0$ mixing implies lower bounds on hadronic EDMs
MSSM with Minimal Flavor Violation
→ CP violation in $\Delta F = 2$ transitions remains generically SM like
 (in particular: small effects in the B_s mixing phase)
→ best low energy probes of CP violation are
 EDMs and observables sensitive to CPV in the $b \rightarrow s\gamma$ transition

non-MFV MSSM frameworks with sizable $(\delta_d^{RR})_{32}$ mass insertions
→ large NP effects in B_s mixing are naturally generated through
 flavor changing right handed currents
→ in the large $\tan \beta$ regime, strong correlation between B_s mixing
 and the rare decay $B_s \rightarrow \mu^+\mu^-$

SUSY alignment models
→ generically large effects in $D^0 - \bar{D}^0$ mixing
→ CP Violation in $D^0 - \bar{D}^0$ mixing implies lower bounds on hadronic EDMs

NP models predict characteristic patterns of effects in flavor observables
measurement of these observables provide important information on
the flavor structure of NP models and allows to rule them out
Flavour DNA

<table>
<thead>
<tr>
<th></th>
<th>MFVMSSM</th>
<th>GMSSM</th>
<th>AC</th>
<th>RVV</th>
<th>SSU(5)$_{RN}$ (*)</th>
<th>RSc (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPV in $D^0 - \bar{D}^0$</td>
<td>★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>CPV in $B_s - \bar{B}_s$</td>
<td>★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>S_{ϕ_K}, S_{η'/K_S}</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★</td>
<td>★</td>
<td>★★★★</td>
<td>?</td>
</tr>
<tr>
<td>$A_{CP}(b \to s\gamma)$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>$A_{7,8}(B \to K^* \ell\ell)$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>$A_9(B \to K^* \ell\ell)$</td>
<td>★</td>
<td>★★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>$B_{s,d} \to \mu^+\mu^-$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>$B \to K(*)\nu\bar{\nu}$</td>
<td>★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$K \to \pi\nu\bar{\nu}$</td>
<td>★</td>
<td>★★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★★</td>
</tr>
<tr>
<td>d_n</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>d_e</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
</tr>
</tbody>
</table>

★★★★: large effects, ★★★: moderate effects, ★★: small effects

(★) SU(5) SUSY GUT as analysed by Buras, Nagai, Paradisi ’10
(★★) Randall-Sundrum model with custodial protection as analysed by Blanke, Buras, Duling, Gemmler, Gori, Weiler ’08