Axion Production and Detection with Superconducting RF Cavities

Ryan Janish

(UC Berkeley)

[RJ, Narayan, Rajendran, Riggins, 1904.07245]

A new light boson? Physics in the far UV can lead to light, weakly-coupled particles.

ALPs that couple to photons are a generic possibility

$$\begin{split} \mathcal{L} \supset \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2 + \frac{1}{4} ga F_{\mu\nu} \widetilde{F}^{\mu\nu} \\ \\ \\ \hline \\ \begin{array}{c} \mathbf{Detection \ Opportunity} \\ \\ \text{ALP-photon mixing in a magnetic field} \end{split}$$

[Hoogeveen, '92]

[Hoogeveen, '92]

[Graham et al '16]

Optical Cavities

 ω, L^{-1} are independent ALPS g < 5x10^-8 GeV^-1 for m_a < meV

Next generation with L \sim 100 m ALPS II (projected): g < 2x10⁻¹¹ GeV⁻¹

RF Cavities

$$\omega, L^{-1} \sim \mathcal{O}(\mathrm{GHz})$$

 $\begin{array}{l} \mbox{CROWS} g < 10^{-7} \mbox{ GeV}^{-1} \\ \mbox{for } m_a < \mu eV \end{array}$

Next generation ???

[Graham et al '16]

Optical Cavities

 ω, L^{-1} are independent

ALPS $g < 5x10^{-8} \text{ GeV}^{-1}$ for $m_a < \text{meV}$ **RF** Cavities

$$\omega, L^{-1} \sim \mathcal{O}(\text{GHz})$$

CROWS $g < 10^{-7} \text{ GeV}^{-1}$ for $m_a < \mu eV$

Next generation with L \sim 100 m ALPS II (projected): g < 2x10⁻¹¹ GeV⁻¹

Next generation ???

This work: Utilize superconducting RF technology to reach g < 7x10⁻¹² GeV⁻¹ in a next generation LSW ALP search

See [Bogorad, Hook, Kahn, Soreq, '19] for a different approach

$$P_{\text{signal}} = P_{\text{input}} \left(\frac{gB_0}{\omega}\right)^4 Q_{\text{pc}} Q_{\text{dc}} |G|^2$$

$$P_{\text{signal}} = P_{\text{input}} \left(\frac{gB_0}{\omega}\right)^4 Q_{\text{pc}}Q_{\text{dc}}|G|^2$$

$$(0.1) \text{ geometric form} \text{ factor, exponentially} \text{ suppressed for } m_a > \omega$$

$$\begin{split} P_{\rm signal} &= P_{\rm input} \left(\frac{gB_0}{\omega}\right)^4 \frac{Q_{\rm pc}Q_{\rm dc}}{\swarrow} |G|^2 \\ \\ \text{Conventional Conducting RF:} \quad Q \sim 10^5 - 10^6 \\ \\ \text{Superconducting RF:} \quad Q \sim 10^{10} - 10^{12} \end{split}$$

$$P_{
m signal} = P_{
m input} \left(rac{gB_0}{\omega}
ight)^4 Q_{
m pc} Q_{
m dc} |G|^2$$

Conventional Conducting RF: $Q \sim 10^5 - 10^6$
Superconducting RF: $Q \sim 10^{10} - 10^{12}$

Type-II Superconductor Critical Field O(0.2 T)

Fields exceeding critical will degrade Q.

Flux tubes penetrate the SC, have a dissipative interaction with an electric current.

Challenge: re-design such that large B and SRF cavity can co-exist

ALP source free of external B₀

Axion production

Equation of Motion: $(\Box + m_a^2)a(x) = -g\vec{E}\cdot\vec{B}$

$$\implies \quad a(x) = -ge^{i\omega t} \int_{\text{pc}} d^3y \ \frac{e^{ik|\vec{x}-\vec{y}|}}{4\pi|\vec{x}-\vec{y}|} (\vec{E} \cdot \vec{B})$$

Axion production

Equation of Motion: $(\Box + m_a^2)a(x) = -g\vec{E}\cdot\vec{B}$ $\Rightarrow \quad a(x) = -ge^{i\omega t} \int_{\text{pc}} d^3y \ \frac{e^{ik|\vec{x}-\vec{y}|}}{4\pi|\vec{x}-\vec{y}|} (\vec{E}\cdot\vec{B})$

ALP source free of external B₀

Drive cavity mode(s) such that $\vec{E} \cdot \vec{B}$ is not identically zero.

May require exciting two modes, ω_1 and ω_2 , which produces axions of frequency $\omega_1 \pm \omega_2$

ALP source free of external B₀

Input power is limited to prevent quenching Maximal source magnitude is the critical field

$$\vec{E} \cdot \vec{B} \lesssim (0.2 \text{ T})^2$$

ALP source free of external B₀

Input power is limited to prevent quenching Maximal source magnitude is the critical field $ec{E}\cdotec{B}\lesssim (0.2~{
m T})^2$

Comparable to conventional cavity with sufficient input power:

$$(\vec{E} \cdot \vec{B}) \sim (0.1 \text{ T})^2 \left(\frac{P_{\text{input}}}{100 \text{ W}}\right)^{\frac{1}{2}} \left(\frac{Q_{\text{pc}}}{10^5}\right)^{\frac{1}{2}} \left(\frac{B_0}{5 \text{ T}}\right)$$

Fundamental advantage of SRF is in the detection cavity

LSW with RF and SRF Cavities

ALP source free of external B₀

Confine large static B₀

ALP-photon conversion

Axion Electrodynamics: $\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} - g\left(\vec{E} \times \vec{\nabla}a - \vec{B}\frac{\partial a}{\partial t}\right)$

Conversion in $B_0 \sim$ Effective Current $\vec{J}_{eff} = g \vec{B}_0 \frac{\partial a}{\partial t}$

ALP-photon conversion

Axion Electrodynamics: $\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} - g\left(\vec{E} \times \vec{\nabla}a - \vec{B}\frac{\partial a}{\partial t}\right)$

Conversion in $B_0 \sim Effective Current \vec{J}_{eff} = g\vec{B}_0 \frac{\partial a}{\partial t}$

Effective current sources a real, poloidal AC field B_a

ALP-photon conversion

Axion Electrodynamics: $\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} - g \left(\vec{E} \times \vec{\nabla} a - \vec{B} \frac{\partial a}{\partial t} \right)$ Conversion in $B_0 \sim$ Effective Current $\vec{J}_{eff} = g \vec{B}_0 \frac{\partial a}{\partial t}$

ALP source free of external B₀

Allow RF signal to escape

Gapped Toroid Inspired by the dark matter ALP search ABRACADABRA [Kahn, Safdi, Thaler '16]

Allow RF signal to escape

Gapped Toroid

Inspired by the dark matter ALP search ABRACADABRA [Kahn, Safdi, Thaler '16]

Gap must be large enough to prevent parasitic capacitance, but small enough to minimize external fringe fields.

Propagation of I_a near the gap depends on the toroid radius R.

Allow RF signal to escape

Quasistatic $(R \omega \ll 1)$

 I_a is spatially uniform, returns on outer surface and sources external magnetic field B_s – "Current Comparator Limit"

Screened $(R\,\omega\gg1)$

 I_a varies rapidly, preventing current from propagating to outer surface and suppressing external field by powers of ωR .

ALP source free of external B₀

Detection Cavity

Couple signal to SRF detection cavity

Detection Cavity

Couple signal to SRF detection cavity

External current I_a can be coupled to a high-Q SRF detection cavity, e.g. though a pickup loop. A different technique may be preferred in practice, but the optimal signal power is unchanged.

Detection Cavity

Couple signal to SRF detection cavity

External current I_a can be coupled to a high-Q SRF detection cavity, e.g. though a pickup loop. A different technique may be preferred in practice, but the optimal signal power is unchanged.

Signal is amplified by Q, but saturates for sufficiently large Q due to dissipative backreaction current on the toroid surface.

Optimal Cavity-Toroid Coupling

How do we maximize the RF signal in the detection cavity?

Together, the axion field and toroid form a non-ideal current source with a maximum obtainable power draw.

Optimal Cavity-Toroid Coupling

Maximum power is extracted when the impedance of the detection cavity matches that of the toroid.

 $P_{\max} = \frac{1}{8} |I_a|^2 \underbrace{(\omega L_t)^2}_{R_t} \xleftarrow{} \text{Inductance of the toroid}}_{\text{Resistance of the toroid}} \approx 10^{-29} \text{ W} \left(\frac{g \text{ GeV}}{10^{-11}}\right) \left(\frac{100 \text{ n}\Omega}{R_t}\right)$ $\approx 140 \ \frac{\text{axions}}{\text{year}} \left(\frac{10^{-5} \text{ eV}}{m_a}\right)$

For small Q, impedance matching is not feasible as it demands a pickup inductance which prohibitively perturbs the resonance frequency. We must "undercouple":

$$P_{\mathrm{uc}} = rac{1}{2} |I_a|^2 \omega L_t Q$$
 \longleftarrow Amplification by detector cavity Q-factor

Toroid Resistance

Type-II Superconducting wires will contain possibly-dissipative flux tubes due to the large, static conversion magnetic field.

Dissipation is due to the Lorentz force between flux tubes and current: $R_t \propto \vec{B_0} \times \vec{I}$

Vanishes for an ideal toroid!

Fringe fields will cause B_0 to not be perfectly toroidal, tilted by an angle $B_{\rm ff}/B_0$: $R_t \approx R_{\perp} \frac{B_{ff}}{B_0} \approx 100 \,\mathrm{n\Omega} \left(\frac{B_{ff}}{10^{-6} \,\mathrm{T}}\right) \left(\frac{5 \,\mathrm{T}}{B_0}\right)$ Optimal signal power for a given Q is the minimum of the matched and undercoupled powers

$$P_{\text{signal}} \approx g^4 \frac{B_{\text{PC}}^4 B_0^2}{\omega^6} \operatorname{Min}\left(\frac{\omega L_t}{R_t}, Q\right)$$

Toroid Limited
Threshold Q $\frac{L_t \omega}{R_t} \approx 10^{10} \left(\frac{R}{10 \text{ cm}}\right) \left(\frac{100 \text{ n}\Omega}{R_t}\right)$

Superconducting Toroid: $R_t \gtrsim \mathrm{n}\Omega$

Narrowband noise

$$P_{
m noise} = rac{T_{
m sys}}{t_{
m int}}$$
 $T_{
m sys} \gtrsim \omega \sim 50 \ {
m mK}$ Quantum Limited

Projected Sensitivity

Projected Sensitivity

Mass m_a (eV)

Axion Production and Detection with Superconducting RF Cavities

A new design for an LSW ALP search based on SRF cavities

Our realization uses a gapped toroid to confine the magnetic field responsible for ALP-photon conversion, protecting the SRF cavities from quenching.

Major engineering challenges: matching the cavity frequencies and coupling the detection cavity without degrading Q.

Comparable and complementary to future optical LSW searches and stellar constraints

Axion Production and Detection with Superconducting RF Cavities

Extra Slides

Stellar ALP Searches

Maximal signal power follows from an equivalent circuit for the axion – toroid – cavity system.

Maximal signal power follows from an equivalent circuit for the axion – toroid – cavity system.

Maximal signal power follows from an equivalent circuit for the axion – toroid – cavity system.

Maximal signal power follows from an equivalent circuit for the axion – toroid – cavity system.

Circuit simplifies:

- Resistor for dissipation in the toroid
- Resistor for dissipation detection cavity

 $Z_{\rm im}$

Imaginary impedance (determines resonance frequency)

Maximum power is transferred to the cavity when L_P is tuned such that the two resistance are equal.

 $(L_t\omega)^2$

Tuning L_P alters the resonance frequency, which is given by the zero of Z_{im}

$$Z_{\rm im} \sim \left(\frac{2}{i\omega L_t} + i\omega C_t + \frac{1}{i\omega \frac{L_t}{L_p}L} + i\omega \frac{L_p}{L_t}C\right)^{-1}$$
$$\omega_{\rm res} \sim \omega_0 \sqrt{1 + 2\frac{L}{L_p}}$$

1

Require $L_p >> L$ to preserve resonance near GHz – otherwise it is not the detection cavity that will rung up, but the pickup loop.

This obstructs impedance matching for small Q, as the optimal L_p is

$$L_p^{\text{match}} = \frac{L}{L_t \omega} R_t Q \gg L$$
$$Q \gg \frac{L_t \omega}{R_t}$$

AC Screening

Increasing the frequency above the quasistatic limit will suppress the external current and external field.

Suppression will scale as a power-law in frequency.

This is hard to calculate in the full toroid geometry, but we can see the nature of the effect in a simpler case.

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

A screening current must first be established on the inner surface.

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

Quasistatic $(\omega H \ll 1)$

Edge charges source quasistatic Coulomb field, with uniform direction along the cylinder.

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

Quasistatic $(\omega H \ll 1)$

Edge charges source quasistatic Coulomb field, with uniform direction along the cylinder.

Coulomb field drives uniform external current, eliminating charge build-up.

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

Quasistatic $(\omega H \ll 1)$

Edge charges source quasistatic Coulomb field, with uniform direction along the cylinder.

Coulomb field drives uniform external current, eliminating charge build-up.

External current sources a field equal to that of the central current.

No Screening

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

Screened $(\omega H \gg 1)$

Edge charges source radiative electric field, with alternating direction.

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

Screened $(\omega H \gg 1)$

Edge charges source radiative electric field, with alternating direction.

Radiative field drives spatially alternating current, charge buildup is maintained.

An AC current is switched on inside of a finite cylindrical, conducting shell – what are the external fields in the vicinity of the conductor?

Screened $(\omega H \gg 1)$

Edge charges source radiative electric field, with alternating direction.

Radiative field drives spatially alternating current, charge buildup is maintained.

Non-uniform external current sources a multi-pole field, suppressed relative to the field of the internal current.

Power-law Screening