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This Talk 

• Neutrino trident production
• Millicharged particles
• Dipole portal to HNL 
• Outlook/future work
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Can have any combination of  

Important BSM background!
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Neutrino Trident arXiv:1612.05642, PRD 2017 (RP, Gabriel Magill)

Given (then current) DUNE CDR 
we projected ~100 events at DUNE

Ballet et.al. arXiv:1807.10973  
found certain approximation breaks.  
We overestimated production by ~ O(few)

DUNE has increased the planned size of 
the Near Detector 

Recent study (arXiv:1902.06765) including full 
DUNE Geant-4 simulation predicts  
~ 1600 events / year at DUNE near detector in 
certain channels.  
 
Determination of dimuon cross section at 40% 
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Probing allowed 
parameter space requires 
a 1% measurement of 
cross section. 

Neutrino Trident New Physics

Potential UV Realizations

New 
Physics!
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Zee-Babu model tends to 
have many accidental 
cancellations 

Higgs Triplet model has 
stronger bounds from 
doubly-charged scalars’s 
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Three Things to Remember 
1. Neutrino trident production has only been measured 

in the di-muon channel.  

2. Intensity + Technology = multi flavor tridents. Cross 
section is small, but enhanced by  
  

•  Coherent effects     
•  Large logarithms 

3. Understanding these “new” Standard Model signals 
gives as a new tool for searching for new physics. 

Z2 × log(Qmax/mℓ)
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MCPs from Proton Beams
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
�
M ! Xe+e�

�
⇥f

⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4

(s�m2
�)

2Q4
. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching

IR Sensitive Cross Section (Rutherford Scattering)
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where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).
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are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching

IR Sensitive Cross Section (Rutherford Scattering)

Q2 = 2me(Ee �me)

17

mailto:ryan.plestid@gmail.com


ryan.plestid@gmail.com

Detecting mCPs At Beam Dumps

Detector

Detection Signal is 
Soft Electron Recoil

2

FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].
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est meson of interest it can produce. This is ⇡0 for LSND,
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comes from changing the effective number of neutrinos dur-
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dently of the existence of a dark photon, which would only
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even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
�
M ! Xe+e�

�
⇥f

⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4

(s�m2
�)

2Q4
. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by
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where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have
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= 2⇡↵2✏2 ⇥
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Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
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Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula
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Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
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at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].
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also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
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where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have
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Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
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⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
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in the lab frame to the recoil energy of the electron via
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e , then sets the scale of the detection
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Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X
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⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
�
M ! Xe+e�

�
⇥f

⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4

(s�m2
�)

2Q4
. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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dently of the existence of a dark photon, which would only
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also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
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where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have
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Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
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Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
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Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula
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Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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MCPs in the Upper Atmosphere

1. Cosmic rays act as a ``broad band’’ proton beam. 
The atmosphere acts like a (very thick) fixed target.  

2. Because cosmic rays come from every direction on 
the sky, angular losses are less important.  

3. Broadband = broad MCP spectrum. 
Detector thresholds place a cut on the kinematics of 
the incident MCP
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Old Ionization Experiments

Underground experiments with 
low thresholds have long 
published bounds on “light 
ionizing particles” e.g. Majorana, 
MACRO etc. 

Bounds are quoted as a flux as a 
function of charge  
 

How does this translate to 
charge vs mass?

Φχ < Φion(ϵ)
1/ϵ

arXiv:1801.10145
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Meson production
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1. Everything I have told you applies to any stable 
particle produced in meson decays.  

2. We compiled data for electromagnetic decaying 
mesons. Other new particles might need  
e.g. D-meson or Kaon distributions  

3. We are only including primary mesons  
(no cascades).

33



ryan.plestid@gmail.com

Super Kamiokande search for SNB

34

mailto:ryan.plestid@gmail.com


ryan.plestid@gmail.com

Super Kamiokande search for SNB

34

mailto:ryan.plestid@gmail.com


Results from cosmic rays
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Conclusions 
 

• Fixed target experiments and 
cosmic ray induced ``beams’’ 
can provide model independent  
bounds on millicharged dark-
sector models.  

• Cosmic rays + neutrino 
telescopes are competitive with 
(and surpass) fixed target 
experiments.  

• MCPs are kind of case study in 
the impact of neutrino 
detectors for low-recoil signals. 
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Outlook and Ongoing Work 
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Radiative Corrections to charged current scattering

Coulomb field of nucleus

× log(Qmax/mℓ) ∼ few %× Z ∼ few %

Requisite error budget for e.g. DUNE is ~1-3 %

What Standard Model physics is important at this level of precision? 

α/4π ∼ 0.1 %

Large logs from radiative corrections

Work ongoing with RHJ Hill, and O Tomalak
See e.g.  
Day and McFarland  arXiv:1206.6745  
Hill and Tomalak,      arXiv:1907.03379
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Mu2e Backgrounds from Radiative Muon Capture

Search for μ− → e±

Background

μ− 27Al → 27Mg γ νμ

γ → e+e−

Study RMC spectrum 
near endpoint

SINDRUM − II
197Au
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Summary and Conclusions
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Conclusions
1. High intensity neutrino experiments are a fertile testing 

ground for SM and BSM physics.  

2. Cosmic rays + Neutrino telescopes can function like a  
fixed target facility offering competitive reach.  

3. “New” SM physics can be impactful across a range of 
communities 

Neturino flux determination 
Expected background for CLFV & LNV searches  

4. Studying alpha-suppressed SM physics teaches us 
how to use new detectors to cut down backgrounds. 
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
�
M ! Xe+e�

�
⇥f

⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4

(s�m2
�)

2Q4
. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
�
M ! Xe+e�

�
⇥f

⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4

(s�m2
�)

2Q4
. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
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M ! Xe+e�

�
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M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have
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= 2⇡↵2✏2 ⇥
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Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
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e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
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Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
�
M ! Xe+e�

�
⇥f

⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4

(s�m2
�)

2Q4
. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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events. 

• Our analysis used some slightly 
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assumptions. 
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].

priately large flux of ⇡± these experiments necessarily
also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
The branching ratio for a meson, M, to mCPs is given
roughly by

BR(M ! ��̄) ⇡ ✏2⇥BR
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M ! Xe+e�
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⇣m�

M

⌘
, (1)

where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have

d�e�
dQ2

= 2⇡↵2✏2 ⇥
2(s�m2

�)
2
� 2sQ2 +Q4
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. (2)

Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
Q2 = 2me(Ee �me) [35]. An experiment’s recoil energy
threshold, E(min)

e , then sets the scale of the detection
cross section as

�e� = 2.6⇥ 10�25cm2
⇥ ✏2 ⇥

1 MeV

E(min)
e �me

. (3)

Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula

sup =
X

Energies

✏4⇥N�(Ei)⇥
Ne

Area
⇥�e�(Ei; m�)⇥E . (4)

Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
angle and energy, we numerically sample its branching
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FIG. 1. Exclusion curves for fermionic mCPs (results are
broadly similar for scalars). Existing data is shown as solid
lines, while projections are shown as dashed curves. The
kinematic reach of a given experiment is set by the heavi-
est meson of interest it can produce. This is ⇡0 for LSND,
⌘ for the Booster experiments, and ⌥ for DUNE. At SHiP,
Drell-Yan production extends the kinematic reach to roughly
10 GeV. The sensitivity of each experiment can be under-
stood via Eq. (4) while the relevant parameters for each ex-
periment are summarized in Table I. The bound on Neff [26]
comes from changing the effective number of neutrinos dur-
ing BBN, while the SLAC mQ and collider bounds are taken
from [17] and [18, 27] respectively. The projected sensitivities
at milliQan are from [27, 28]. Our exclusions apply indepen-
dently of the existence of a dark photon, which would only
introduce additional constraints [29].
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also produce a similar number [i.e. O(1020)] of ⇡0 [16].
For large beam energies, other neutral mesons (e.g. ⌘, ⌥,
J/ ) are also produced. Any significant branching ratios
to lepton pairs necessarily implies an associated decay to
pairs of mCPs, resulting in a significant flux of mCPs
even for extremely small charges. In the case of ⌘ and
⇡0, Dalitz decays ⇡0/⌘ ! ���̄ dominate, while for J/ 
and ⌥ direct decays J/ ,⌥ ! ��̄ are most important.
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where M is the mass of the parent meson, X denotes any
additional particles, and f(m�/M) is a phase space factor
that decreases slowly as a function of m�/M . The num-
ber of mCPs passing through the detector is a function of
both the branching ratio and geometric losses which can
vary substantially between experiments (see Table I).

We now turn to the detection of mCPs at neutrino
beam dump experiments, where the predominant signa-
ture is elastic scattering with electrons. The dominance
of electron scattering as a detection signal is related to
the low-Q2 sensitivity of the scattering cross section. Ex-

plicitly, in the limit of small electron mass, we have
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Upon integrating over momentum transfers, we see that
the total cross section will be dominated by the small-
Q2 contribution to the integral. In this limit, we have
d�e�/dQ2

⇡ 4⇡↵2✏2/Q4, and so we can see immedi-
ately that �e� ⇡ 4⇡↵2✏2/Q2

min. We may relate Qmin
in the lab frame to the recoil energy of the electron via
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e , then sets the scale of the detection
cross section as
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Consequently, sensitivity to mCPs can be greatly en-
hanced by accurately measuring low electron energy re-
coils (an important feature for search strategies at future
experiments).

Results: We now discuss the details of the modelling
and analysis used to create Fig. 1. The various curves
are obtained by performing a sensitivity analysis [36]:
given a number of predicted background events b and
data n, the number of signal events sup consistent with
the observation and backgrounds at (1 � ↵) credibility
level is found by solving the equation ↵ = �(1 + n, b +
sup)/�(1 + n, b) where �(x, y) is the upper incomplete
gamma function [37]. Throughout this paper, we choose
a credibility interval of 1 � ↵ = 95% and calculate the
corresponding bounds implied by sup on our mCP model
according to the formula
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Here, ✏ is the mCP electric charge (in units of e), N�(Ei)
represents the number of mCPs with energy Ei arriv-
ing at the detector, �e�(Ei) is the detection cross section
consistent with the angular and recoil cuts in the experi-
ment, Ne is the total number of electrons inside the active
volume of the detector, E is an overall electron detection
efficiency. Finally, “Area” in (4) stands for the active vol-
ume divided by the average length hli traversed by parti-
cles inside the detector. The total exposure is contained
in N�(Ei). For most of the mCP parameter space under
consideration, electromagnetic decays of mesons provide
the dominant flux contribution, whereas Drell-Yan pro-
duction (DYP) dominates for the large mCP masses that
are only accessible at DUNE and SHiP.

To estimate how many mCPs of energy Ei arrive at the
detector, we model the angular and energy distributions
of the mesons using one of several empirical formulas to
be discussed below. Given a meson produced at a certain
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Summary 

1. Neutrino trident production will be observable at 
upcoming intensity frontier experiments.  

As of yet unobserved SM physics
Probe of new physics.  

2. Millicharged particles are testable at neutrino experiments 
(both new and old).  

3. Cosmic rays can serve as a fixed target ``facility’’ with a 
broadband beam and huge downstream detectors.  

4. We outline a simple procedure for generating cosmic ray 
flux 
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