On Asymmetry Observables In $b \rightarrow c \tau \nu$

Pouya Asadi

pasadi@mit.com
Center for Theoretical Physics Massachusetts Institute of Technology

Based on : 1905.03311
With : David Shih
$+$
1810.06597, 2004. $X X X X X$

With : Matthew Buckley, Jorge Camalich, Anna Hallin, David Shih, Susanne Westhoff

Talk Presented @ Fermilab
March 26, 2020

Outline

- Overview of $R_{D^{(*)}}$
- $F_{D^{*}}^{L}$ and $R_{J / \psi}$
- A New Asymmetry Observable

Outline

- Overview of $R_{D^{(*)}}$
- $F_{D^{*}}^{L}$ and $R_{J / \psi}$
- A New Asymmetry Observable

The Standard Model and Beyond

There are ample implications that the Standard Model (SM) is not the whole picture :

The Standard Model and Beyond

There are ample implications that the Standard Model (SM) is not the whole picture :

- Why are there 3 generations of fermions? Why are different yukawa couplings in the SM so different?

The Standard Model and Beyond

There are ample implications that the Standard Model (SM) is not the whole picture :

- Why are there 3 generations of fermions? Why are different yukawa couplings in the SM so different?
- What is the origin of the CKM matrix?

The Standard Model and Beyond

There are ample implications that the Standard Model (SM) is not the whole picture :

- Why are there 3 generations of fermions? Why are different yukawa couplings in the SM so different?
- What is the origin of the CKM matrix?
- What is the particle nature of DM ?

The Standard Model and Beyond

There are ample implications that the Standard Model (SM) is not the whole picture :

- Why are there 3 generations of fermions? Why are different yukawa couplings in the SM so different?
- What is the origin of the CKM matrix?
- What is the particle nature of DM?
- What is determining the scale of Electroweak symmetry breaking (EWSB)?

The Standard Model and Beyond

There are ample implications that the Standard Model (SM) is not the whole picture :

- Why are there 3 generations of fermions? Why are different yukawa couplings in the SM so different?
- What is the origin of the CKM matrix?
- What is the particle nature of DM?
- What is determining the scale of Electroweak symmetry breaking (EWSB)?
- ...

Flavor Physics and B Factories

- In light of these questions, there have been numerous efforts to look for physics beyond the SM.
- One particular direction is the study of the flavor physics processes.

Flavor Physics and B Factories

- In light of these questions, there have been numerous efforts to look for physics beyond the SM.
- One particular direction is the study of the flavor physics processes.

Flavor Physics and B Factories

- In light of these questions, there have been numerous efforts to look for physics beyond the SM.
- One particular direction is the study of the flavor physics processes.

Flavor Physics and B Factories

- In light of these questions, there have been numerous efforts to look for physics beyond the SM.
- One particular direction is the study of the flavor physics processes.

The Flavor Experiments

These experiments study different aspects of flavor physics:

The Flavor Experiments

These experiments study different aspects of flavor physics:

- Precision measurement of the CKM matrix entries

The Flavor Experiments

These experiments study different aspects of flavor physics:

- Precision measurement of the CKM matrix entries
- Different measurements of CP-violation

The Flavor Experiments

These experiments study different aspects of flavor physics:

- Precision measurement of the CKM matrix entries
- Different measurements of CP-violation
- Hadron spectroscopy

The Flavor Experiments

These experiments study different aspects of flavor physics:

- Precision measurement of the CKM matrix entries
- Different measurements of CP-violation
- Hadron spectroscopy
- Signs of new physics (NP) in SM rare processes

The Flavor Experiments

These experiments study different aspects of flavor physics:

- Precision measurement of the CKM matrix entries
- Different measurements of CP-violation
- Hadron spectroscopy
- Signs of new physics (NP) in SM rare processes

Flavor physics precision measurements can unveil the structure of NP in higher energies.

Probing Higher Energies

NP in the Flavor Experiments

NP in the Flavor Experiments

- There are a handful of discrepancies between the SM predictions and the experimental results, e.g. in Lepton Flavor Universality (LFU) ratios.

NP in the Flavor Experiments

- There are a handful of discrepancies between the SM predictions and the experimental results, e.g. in Lepton Flavor Universality (LFU) ratios.

$$
R_{D} \equiv \frac{\Gamma(B \rightarrow D \tau \nu)}{\Gamma(B \rightarrow D / \nu)}, \quad R_{D^{*}} \equiv \frac{\Gamma\left(B \rightarrow D^{*} \tau \nu\right)}{\Gamma\left(B \rightarrow D^{*} l \nu\right)}, \quad I=e, \mu
$$

NP in the Flavor Experiments

- There are a handful of discrepancies between the SM predictions and the experimental results, e.g. in Lepton Flavor Universality (LFU) ratios.

$$
\begin{aligned}
& R_{D} \equiv \frac{\Gamma(B \rightarrow D \tau \nu)}{\Gamma(B \rightarrow D l \nu)}, \quad R_{D^{*}} \equiv \frac{\Gamma\left(B \rightarrow D^{*} \tau \nu\right)}{\Gamma\left(B \rightarrow D^{*} l \nu\right)}, \quad I=e, \mu \\
& R_{D}^{S M}=0.299 \pm 0.003, \quad R_{D^{*}}^{S M}=0.258 \pm 0.005
\end{aligned}
$$

NP in the Flavor Experiments

- There are a handful of discrepancies between the SM predictions and the experimental results, e.g. in Lepton Flavor Universality (LFU) ratios.

$$
\begin{aligned}
& R_{D} \equiv \frac{\Gamma(B \rightarrow D \tau \nu)}{\Gamma(B \rightarrow D / \nu)}, \quad R_{D^{*}} \equiv \frac{\Gamma\left(B \rightarrow D^{*} \tau \nu\right)}{\Gamma\left(B \rightarrow D^{*} l \nu\right)}, \quad I=e, \mu \\
& R_{D}^{S M}=0.299 \pm 0.003, \quad R_{D^{*}}^{S M}=0.258 \pm 0.005, \\
& R_{D}^{\text {obs }}=0.340 \pm 0.028, \quad R_{D^{*}}^{o b s}=0.295 \pm 0.013 \text {. }
\end{aligned}
$$

Experimental Results

The Theory

$\left\langle D^{(*)} \tau \nu\right|\left(\bar{c} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\nu} P_{L} \nu\right)|\bar{B}\rangle$

The Theory

$$
\begin{gathered}
\frac{g_{\mu \nu}}{m_{W}^{2}} \\
\left\langle D^{(*)} \tau \nu\right|\left(\bar{c} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\nu} P_{L} \nu\right)|\bar{B}\rangle
\end{gathered}
$$

- The most general dim-6 effective Hamiltonian:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}} & =\frac{4 G_{F} V_{c b}}{\sqrt{2}} \sum_{\substack{x=S, V, T \\
M, N=L, R}} C_{M N}^{X} \mathcal{O}_{M N}^{X} \\
\mathcal{O}_{M N}^{S} & \equiv\left(\bar{c} P_{M} b\right)\left(\bar{\tau} P_{N} \nu\right) \\
\mathcal{O}_{M N}^{V} & \equiv\left(\bar{c} \gamma^{\mu} P_{M} b\right)\left(\bar{\tau} \gamma_{\mu} P_{N} \nu\right) \\
\mathcal{O}_{M N}^{T} & \equiv\left(\bar{c} \sigma^{\mu \nu} P_{M} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{N} \nu\right)
\end{aligned}
$$

for $M, N=R$ or $L\left(S M: C_{L L}^{V}=1\right)$.

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.*

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results \rightarrow Implications for SMEFT Operators

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results \rightarrow Implications for SMEFT Operators \rightarrow UV Model.

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results \rightarrow Implications for SMEFT Operators \rightarrow UV Model.
- What are the implications of $R_{D^{(*)}}$ measurements for the 10 operators above?

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results \rightarrow Implications for SMEFT Operators \rightarrow UV Model.
- What are the implications of $R_{D^{(*)}}$ measurements for the 10 operators above?
- There are many combination of these operators that can explain $R_{D^{(*)}}$ anomalies. How can we distinguish them?

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results \rightarrow Implications for SMEFT Operators \rightarrow UV Model.
- What are the implications of $R_{D^{(*)}}$ measurements for the 10 operators above?
- There are many combination of these operators that can explain $R_{D^{(*)}}$ anomalies. How can we distinguish them?
- What other observables are sensitive to these operators?

A Model-Independent Approach

- The culprit NP seems to be relatively decoupled from the SM.* Thus, SM Effective Field Theory (SMEFT) is a reasonable framework.
- Exp. Results \rightarrow Implications for SMEFT Operators \rightarrow UV Model.
- What are the implications of $R_{D^{(*)}}$ measurements for the 10 operators above?
- There are many combination of these operators that can explain $R_{D^{(*)}}$ anomalies. How can we distinguish them?
- What other observables are sensitive to these operators?
- Do these observables prefer any of $R_{D^{(*)}}$ solutions?

Outline

- Overview of $R_{D^{(*)}}$
- $F_{D^{*}}^{L}$ and $R_{J / \psi}$
- A New Asymmetry Observable

Two Related Anomalies: $F_{D^{*}}^{L}$ and $R_{J / \psi}$

Two Related Anomalies: $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)},
$$

Two Related Anomalies: $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\begin{gathered}
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)}, \\
\left(F_{D^{*}}^{L}\right)_{S M}=0.457 \pm 0.01, \quad\left(F_{D^{*}}^{L}\right)_{o b s}=0.60 \pm 0.08 \pm 0.04
\end{gathered}
$$

Two Related Anomalies: $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\begin{gathered}
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)}, \\
\left(F_{D^{*}}^{L}\right)_{S M}=0.457 \pm 0.01, \quad\left(F_{D^{*}}^{L}\right)_{o b s}=0.60 \pm 0.08 \pm 0.04 \\
R_{J / \psi}=\frac{\Gamma\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\Gamma\left(B_{c} \rightarrow J / \psi / \nu\right)}
\end{gathered}
$$

Two Related Anomalies: $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\begin{gathered}
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)}, \\
\left(F_{D^{*}}^{L}\right)_{S M}=0.457 \pm 0.01, \quad\left(F_{D^{*}}^{L}\right)_{o b s}=0.60 \pm 0.08 \pm 0.04 \\
R_{J / \psi}=\frac{\Gamma\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\Gamma\left(B_{c} \rightarrow J / \psi / \nu\right)} \\
\left(R_{J / \psi}\right)_{S M}=0.23-0.30,^{*} \quad\left(R_{J / \psi}\right)_{o b s}=0.71 \pm 0.17 \pm 0.18
\end{gathered}
$$

$$
\begin{gathered}
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)}, \\
\left(F_{D^{*}}^{L}\right)_{S M}=0.457 \pm 0.01, \quad\left(F_{D^{*}}^{L}\right)_{o b s}=0.60 \pm 0.08 \pm 0.04 \\
R_{J / \psi}=\frac{\Gamma\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\Gamma\left(B_{c} \rightarrow J / \psi / \nu\right)} \\
\left(R_{J / \psi}\right)_{S M}=0.23-0.30,^{*} \quad\left(R_{J / \psi}\right)_{\text {obs }}=0.71 \pm 0.17 \pm 0.18
\end{gathered}
$$

- Maybe these observables prefer some of the operators over the others?

$$
\begin{gathered}
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)}, \\
\left(F_{D^{*}}^{L}\right)_{S M}=0.457 \pm 0.01, \quad\left(F_{D^{*}}^{L}\right)_{o b s}=0.60 \pm 0.08 \pm 0.04 \\
R_{J / \psi}=\frac{\Gamma\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\Gamma\left(B_{c} \rightarrow J / \psi / \nu\right)} \\
\left(R_{J / \psi}\right)_{S M}=0.23-0.30,{ }^{*} \quad\left(R_{J / \psi}\right)_{\text {obs }}=0.71 \pm 0.17 \pm 0.18
\end{gathered}
$$

- Maybe these observables prefer some of the operators over the others?
- No single operator can accommodate these new observations.

$$
\begin{gathered}
F_{D^{*}}^{L}=\frac{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \nu\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \nu\right)}, \\
\left(F_{D^{*}}^{L}\right)_{S M}=0.457 \pm 0.01, \quad\left(F_{D^{*}}^{L}\right)_{o b s}=0.60 \pm 0.08 \pm 0.04 \\
R_{J / \psi}=\frac{\Gamma\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\Gamma\left(B_{c} \rightarrow J / \psi / \nu\right)} \\
\left(R_{J / \psi}\right)_{S M}=0.23-0.30,^{*} \quad\left(R_{J / \psi}\right)_{\text {obs }}=0.71 \pm 0.17 \pm 0.18
\end{gathered}
$$

- Maybe these observables prefer some of the operators over the others?
- No single operator can accommodate these new observations.
- They all give rise to very small deviation from SM prediction for $F_{D^{*}}^{L}$ and $R_{J / \psi}$.

What does it take to explain the two new anomalies?

What does it take to explain the two new anomalies?

- We should go beyond one or two operators. But how?

What does it take to explain the two new anomalies?

- We should go beyond one or two operators. But how?
- Is there any combination of the dim-6 operators that can explain these observed values?

What does it take to explain the two new anomalies?

- We should go beyond one or two operators. But how?
- Is there any combination of the dim-6 operators that can explain these observed values?
- What is the maximum attainable $F_{D^{*}}^{L}$ or $R_{J / \psi}$ in the space of all WCs?[1905.03311]

Maximizing $F_{D^{*}}^{L}$ or $R_{J / \psi}$

- There are 10 dim- 6 operators, i.e. the space of all possible WCs has 20 real dimensions.

Maximizing $F_{D^{*}}^{L}$ or $R_{J / \psi}$

- There are 10 dim- 6 operators, i.e. the space of all possible WCs has 20 real dimensions.
- We can, however, show that the maximum of $F_{D^{*}}^{L}$ or $R_{J / \psi}$ can be obtained by focusing on only real WCs of operators with a fixed neutrino handedness.

Maximizing $F_{D^{*}}^{L}$ or $R_{J / \psi}$

- There are 10 dim- 6 operators, i.e. the space of all possible WCs has 20 real dimensions.
- We can, however, show that the maximum of $F_{D^{*}}^{L}$ or $R_{J / \psi}$ can be obtained by focusing on only real WCs of operators with a fixed neutrino handedness.
- We focus on the space of operators with LH neutrinos with real WCs, a 5-dim space.

Maximizing $F_{D^{*}}^{L}$ or $R_{J / \psi}$

- There are 10 dim- 6 operators, i.e. the space of all possible WCs has 20 real dimensions.
- We can, however, show that the maximum of $F_{D^{*}}^{L}$ or $R_{J / \psi}$ can be obtained by focusing on only real WCs of operators with a fixed neutrino handedness.
- We focus on the space of operators with LH neutrinos with real WCs, a 5-dim space.
- Three further constraints: $R_{D}, R_{D^{*}}, \operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$. Two remaining degrees of freedom to maximize $F_{D^{*}}^{L}$ or $R_{J / \psi}$ over.

Global Maximums

Global Maximums

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?
- $F_{D^{*}}^{L}$: Any BSM explanation should include all 5 relevant dim-6 operators (or their RH neutrino equivalent).

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?
- $F_{D^{*}}^{L}$: Any BSM explanation should include all 5 relevant dim-6 operators (or their RH neutrino equivalent). There is no model generating $\mathcal{O}_{R L}^{V}$.

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?
- $F_{D^{*}}^{L}$: Any BSM explanation should include all 5 relevant dim-6 operators (or their RH neutrino equivalent). There is no model generating $\mathcal{O}_{R L}^{V}$.
- Both these observables are very insensitive to NP effects, i.e. NP WCs should be comparable to SM to have non-negligible effect on these observables.

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?
- $F_{D^{*}}^{L}$: Any BSM explanation should include all 5 relevant dim-6 operators (or their RH neutrino equivalent). There is no model generating $\mathcal{O}_{R L}^{V}$.
- Both these observables are very insensitive to NP effects, i.e. NP WCs should be comparable to SM to have non-negligible effect on these observables.
- Not the best observables to probe relevant SMEFT operators.

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?
- $F_{D^{*}}^{L}$: Any BSM explanation should include all 5 relevant dim-6 operators (or their RH neutrino equivalent). There is no model generating $\mathcal{O}_{R L}^{V}$.
- Both these observables are very insensitive to NP effects, i.e. NP WCs should be comparable to SM to have non-negligible effect on these observables.
- Not the best observables to probe relevant SMEFT operators.
- Is there any other observables that can distinguish different effective operators from one another?

Concluding Remarks on $R_{J / \psi}$ and $F_{D^{*}}^{L}$

- $R_{J / \psi}$: No combination of the WCs can explain the observed value. Fluctuations? Experimental Error?
- $F_{D^{*}}^{L}$: Any BSM explanation should include all 5 relevant dim-6 operators (or their RH neutrino equivalent). There is no model generating $\mathcal{O}_{R L}^{V}$.
- Both these observables are very insensitive to NP effects, i.e. NP WCs should be comparable to SM to have non-negligible effect on these observables.
- Not the best observables to probe relevant SMEFT operators.
- Is there any other observables that can distinguish different effective operators from one another?
- Some other asymmetry observables may help.

Outline

- Overview of $R_{D^{(*)}}$
- $F_{D^{*}}^{L}$ and $R_{J / \psi}$
- A New Asymmetry Observable

Discerning Different Solutions

Discerning Different Solutions

$$
\mathcal{A}_{F B}^{(*)}=\frac{1}{\Gamma^{(*)}}\left(-\int_{\theta=0}^{\theta=\pi / 2}+\int_{\theta=\pi / 2}^{\theta=\pi}\right) d \theta \frac{d \Gamma^{(*)}}{d \theta}
$$

Discerning Different Solutions

$$
\mathcal{A}_{F B}^{(*)}=\frac{1}{\Gamma^{(*)}}\left(-\int_{\theta=0}^{\theta=\pi / 2}+\int_{\theta=\pi / 2}^{\theta=\pi}\right) d \theta \frac{d \Gamma^{(*)}}{d \theta}, \quad \mathcal{P}_{\hat{e}}^{(*)}=\frac{\Gamma_{+\hat{e}}^{(*)}-\Gamma_{-\hat{e}}^{(*)}}{\Gamma_{+\hat{e}}^{(*)}+\Gamma_{-\hat{e}}^{(*)}} .
$$

Discerning Different Solutions

$$
\mathcal{A}_{F B}^{(*)}=\frac{1}{\Gamma^{(*)}}\left(-\int_{\theta=0}^{\theta=\pi / 2}+\int_{\theta=\pi / 2}^{\theta=\pi}\right) d \theta \frac{d \Gamma^{(*)}}{d \theta}, \quad \mathcal{P}_{\hat{e}}^{(*)}=\frac{\Gamma_{+\hat{e}}^{(*)}-\Gamma_{-\hat{e}}^{(*)}}{\Gamma_{+\hat{e}}^{(*)}+\Gamma_{-\hat{e}}^{(*)}} .
$$

Observable	$\mathcal{A}_{F B}$	$\mathcal{A}_{F B}^{*}$	\mathcal{P}_{L}	\mathcal{P}_{L}^{*}	\mathcal{P}_{\perp}	\mathcal{P}_{\perp}^{*}	\mathcal{P}_{T}	\mathcal{P}_{T}^{*}
SM value	-0.360	0.063	0.325	-0.497	-0.842	-0.499	0	0

Discerning Different Solutions

$$
\mathcal{A}_{F B}^{(*)}=\frac{1}{\Gamma^{(*)}}\left(-\int_{\theta=0}^{\theta=\pi / 2}+\int_{\theta=\pi / 2}^{\theta=\pi}\right) d \theta \frac{d \Gamma^{(*)}}{d \theta}, \quad \mathcal{P}_{\hat{e}}^{(*)}=\frac{\Gamma_{+\hat{e}}^{(*)}-\Gamma_{-\hat{e}}^{(*)}}{\Gamma_{+\hat{e}}^{(*)}+\Gamma_{-\hat{e}}^{(*)}}
$$

Observable	$\mathcal{A}_{F B}$	$\mathcal{A}_{F B}^{*}$	\mathcal{P}_{L}	\mathcal{P}_{L}^{*}	\mathcal{P}_{\perp}	\mathcal{P}_{\perp}^{*}	\mathcal{P}_{T}	\mathcal{P}_{T}^{*}
SM value	-0.360	0.063	0.325	-0.497	-0.842	-0.499	0	0

With enough precision, these observables can discern different models/operators used for $R_{D^{(*)}}$ anomalies [1810.06597].

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

\[

\]

Another Asymmetry[2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$		

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$		

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$	$\mathcal{P}_{L}^{(*)}$	

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$	$\mathcal{P}_{L}^{(*)}$	$\mathcal{A}_{L}^{(*)}$

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

\[

\]

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right)
$$

$$
\begin{aligned}
& \\
& \frac{d^{2} \Gamma_{B}^{(*) \pm}}{d q^{2} d \cos \theta_{\tau}}=\frac{d \Gamma^{(*)}}{d q^{2}}\left(A^{(*), \pm}\left(q^{2}\right)+B^{(*), \pm}\left(q^{2}\right) \cos \theta_{\tau}+C^{(*), \pm}\left(q^{2}\right) \cos ^{2} \theta_{\tau}\right.
\end{aligned}
$$

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

\[

\]

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right) .
$$

[1810.06597] : $B^{-}=0 \Longrightarrow \mathcal{A}_{F B}=\mathcal{A}_{L} . B^{*-} \neq 0$

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

\[

\]

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right) .
$$

[1810.06597]: $B^{-}=0 \Longrightarrow \mathcal{A}_{F B}=\mathcal{A}_{L} . B^{*-} \neq 0 \quad \mathcal{A}_{L}^{* S M}=-0.322$

Another Asymmetry [2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$	$\mathcal{P}_{L}^{(*)}$	$\mathcal{A}_{L}^{(*)}$

$\frac{d^{2} \Gamma_{B}^{(*) \pm}}{d q^{2} d \cos \theta_{\tau}}=\frac{d \Gamma^{(*)}}{d q^{2}}\left(A^{(*), \pm}\left(q^{2}\right)+B^{(*), \pm}\left(q^{2}\right) \cos \theta_{\tau}+C^{(*), \pm}\left(q^{2}\right) \cos ^{2} \theta_{\tau}\right.$

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right) .
$$

[1810.06597]: $B^{-}=0 \Longrightarrow \mathcal{A}_{F B}=\mathcal{A}_{L} \cdot B^{*-} \neq 0 \quad \mathcal{A}_{L}^{* S M}=-0.322$
Only \mathcal{P}_{L}^{*} has been measured so far.

Another Asymmetry[2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$	$\mathcal{P}_{L}^{(*)}$	$\mathcal{A}_{L}^{(*)}$

$\frac{d^{2} \Gamma_{B}^{(*) \pm}}{d q^{2} d \cos \theta_{\tau}}=\frac{d \Gamma^{(*)}}{d q^{2}}\left(A^{(*), \pm}\left(q^{2}\right)+B^{(*), \pm}\left(q^{2}\right) \cos \theta_{\tau}+C^{(*), \pm}\left(q^{2}\right) \cos ^{2} \theta_{\tau}\right.$

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right) .
$$

[1810.06597]: $B^{-}=0 \Longrightarrow \mathcal{A}_{F B}=\mathcal{A}_{L} \cdot B^{*-} \neq 0 \quad \mathcal{A}_{L}^{* S M}=-0.322$
Only \mathcal{P}_{L}^{*} has been measured so far. With terrible error bars!

Another Asymmetry[2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$	$\mathcal{P}_{L}^{(*)}$	$\mathcal{A}_{L}^{(*)}$

$\frac{d^{2} \Gamma_{B}^{(*) \pm}}{d q^{2} d \cos \theta_{\tau}}=\frac{d \Gamma^{(*)}}{d q^{2}}\left(A^{(*), \pm}\left(q^{2}\right)+B^{(*), \pm}\left(q^{2}\right) \cos \theta_{\tau}+C^{(*), \pm}\left(q^{2}\right) \cos ^{2} \theta_{\tau}\right.$

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right) .
$$

[1810.06597]: $B^{-}=0 \Longrightarrow \mathcal{A}_{F B}=\mathcal{A}_{L} \cdot B^{*-} \neq 0 \quad \mathcal{A}_{L}^{* S M}=-0.322$
Only \mathcal{P}_{L}^{*} has been measured so far. With terrible error bars!
We don't directly observe τ.

Another Asymmetry[2004.XXXXX]

Integrating over the phase space of $B \rightarrow D^{(*)} \tau \nu$:

	$\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$	$-\int_{0}^{1} d c_{\theta}+\int_{-1}^{0} d c_{\theta}$
$\Gamma_{B}^{+}+\Gamma_{B}^{-}$	$\Gamma^{(*)}$	$\mathcal{A}_{F B}^{(*)}$
$\Gamma_{B}^{+}-\Gamma_{B}^{-}$	$\mathcal{P}_{L}^{(*)}$	$\mathcal{A}_{L}^{(*)}$

$\frac{d^{2} \Gamma_{B}^{(*) \pm}}{d q^{2} d \cos \theta_{\tau}}=\frac{d \Gamma^{(*)}}{d q^{2}}\left(A^{(*), \pm}\left(q^{2}\right)+B^{(*), \pm}\left(q^{2}\right) \cos \theta_{\tau}+C^{(*), \pm}\left(q^{2}\right) \cos ^{2} \theta_{\tau}\right.$

$$
\mathcal{A}_{F B}^{(*)}=\left(B^{(*),+}+B^{(*),-}\right), \quad \mathcal{A}_{L}^{(*)}=\left(B^{(*),+}-B^{(*),-}\right) .
$$

[1810.06597]: $B^{-}=0 \Longrightarrow \mathcal{A}_{F B}=\mathcal{A}_{L} \cdot B^{*-} \neq 0 \quad \mathcal{A}_{L}^{* S M}=-0.322$
Only \mathcal{P}_{L}^{*} has been measured so far. With terrible error bars!
We don't directly observe τ. Subsequent decays required.

Proposals for τ 's Asymmetry Observables

Proposals for τ 's Asymmetry Observables

- s_{d} : Daughter meson (d) energy. $\theta_{d}: d$ and $D^{(*)}$ angle.

Proposals for τ 's Asymmetry Observables

- s_{d} : Daughter meson (d) energy. $\theta_{d}: d$ and $D^{(*)}$ angle.
- We are using the distribution of the events in s_{d} and $\operatorname{sign}\left(\cos \theta_{d}\right)$ to estimate $\mathcal{P}_{L / \perp}^{*}\left(q^{2}\right)$ and $\mathcal{A}_{F B / L}^{*}\left(q^{2}\right)$

Proposals for τ 's Asymmetry Observables

- s_{d} : Daughter meson (d) energy. $\theta_{d}: d$ and $D^{(*)}$ angle.
- We are using the distribution of the events in s_{d} and $\operatorname{sign}\left(\cos \theta_{d}\right)$ to estimate $\mathcal{P}_{L / \perp}^{*}\left(q^{2}\right)$ and $\mathcal{A}_{F B / L}^{*}\left(q^{2}\right)$

$$
\begin{aligned}
& p\left(q^{2}, s_{d}, \operatorname{sign}\left(\cos \theta_{d}\right) \mid \mathcal{A}_{F B}, \mathcal{P}_{L}, \mathcal{P}_{\perp}\right)=\frac{1}{\Gamma} \frac{d \Gamma}{d q^{2}} \\
\times & {\left[f_{0}^{d}\left(s_{d}\right)+f_{L}^{d}\left(s_{d}\right) \mathcal{P}_{L}\left(q^{2}\right)\right.} \\
+ & \left.\operatorname{sign}\left(\cos \theta_{d}\right)\left(f_{\perp}^{d}\left(s_{d}\right) \mathcal{P}_{\perp}\left(q^{2}\right)+f_{F B}^{d}\left(s_{d}\right) \mathcal{A}_{F B}\left(q^{2}\right)\right)\right]
\end{aligned}
$$

Proposals for τ 's Asymmetry Observables

- s_{d} : Daughter meson (d) energy. $\theta_{d}: d$ and $D^{(*)}$ angle.
- We are using the distribution of the events in s_{d} and $\operatorname{sign}\left(\cos \theta_{d}\right)$ to estimate $\mathcal{P}_{L / \perp}^{*}\left(q^{2}\right)$ and $\mathcal{A}_{F B / L}^{*}\left(q^{2}\right)$

$$
\begin{aligned}
& p\left(q^{2}, s_{d}, \operatorname{sign}\left(\cos \theta_{d}\right) \mid \mathcal{A}_{F B}, \mathcal{P}_{L}, \mathcal{P}_{\perp}\right)=\frac{1}{\Gamma} \frac{d \Gamma}{d q^{2}} \\
& \times {\left[f_{0}^{d}\left(s_{d}\right)+f_{L}^{d}\left(s_{d}\right) \mathcal{P}_{L}\left(q^{2}\right)\right.} \\
&+\left.\operatorname{sign}\left(\cos \theta_{d}\right)\left(f_{\perp}^{d}\left(s_{d}\right) \mathcal{P}_{\perp}\left(q^{2}\right)+f_{F B}^{d}\left(s_{d}\right) \mathcal{A}_{F B}\left(q^{2}\right)\right)\right] \\
& p\left(q^{2}, s_{d}, \operatorname{sign}\left(\cos \theta_{d}\right) \mid \mathcal{A}_{F B}^{*}, \mathcal{A}_{L}^{*}, \mathcal{P}_{L}^{*}, \mathcal{P}_{\perp}^{*}\right)=\frac{1}{\Gamma^{*}} \frac{d \Gamma^{*}}{d q^{2}} \\
& \times {\left[f_{0}^{* d}\left(s_{d}\right)+f_{L}^{* d}\left(s_{d}\right) \mathcal{P}_{L}\left(q^{2}\right)+\operatorname{sign}\left(\cos \theta_{d}\right)\left(f_{\perp}^{* d}\left(s_{d}\right) \mathcal{P}_{\perp}^{*}\left(q^{2}\right)\right.\right.} \\
&+\quad f_{\left.\left.A_{F B}^{* d}\left(s_{d}\right) \mathcal{A}_{F B}^{*}\left(q^{2}\right)+f_{A_{L}}^{* d}\left(s_{d}\right) \mathcal{A}_{L}^{*}\left(q^{2}\right)\right)\right]}
\end{aligned}
$$

Proposals for τ 's Asymmetry Observables

- But how well can we measure these observables?

Proposals for τ 's Asymmetry Observables

- But how well can we measure these observables?
- One can estimate the stat. error bars from a fisher information analysis.

Proposals for τ 's Asymmetry Observables

- But how well can we measure these observables?
- One can estimate the stat. error bars from a fisher information analysis.
- [1702.02773] : The proposal made in a slightly different language for $B \rightarrow D$ decay.

Proposals for τ 's Asymmetry Observables

- But how well can we measure these observables?
- One can estimate the stat. error bars from a fisher information analysis.
- [1702.02773] : The proposal made in a slightly different language for $B \rightarrow D$ decay.
- In its Fisher information analysis, [1702.02773] is missing a term related to $\operatorname{sign}\left(\cos \theta_{d}\right)$. Including that improves the precision.

Achievable Precision - The Case of D

- The relative uncertainties around SM central values (with $50 \mathrm{ab}^{-1}$ data at Belle II):

Achievable Precision - The Case of D

- The relative uncertainties around SM central values (with $50 \mathrm{ab}^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}}{\mathcal{P}_{L}^{S M}}$	$\frac{\delta \mathcal{P}_{\perp}}{\mathcal{P}_{S M}^{S M}}$	$\frac{\delta \mathcal{A}_{F B}}{\mathcal{A}_{F B}^{S M}}$
Previous Precision	3%	9%	11%
New Precision	9%	4%	6%

Achievable Precision - The Case of D

- The relative uncertainties around SM central values (with 50ab ${ }^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}}{\mathcal{P}_{L}^{S M}}$	$\frac{\delta \mathcal{P}_{\perp}}{\mathcal{P}_{S M}^{S M}}$	$\frac{\delta \mathcal{A}_{F B}}{\mathcal{A}_{F B}^{S M}}$
Previous Precision	3%	9%	11%
New Precision	9%	4%	6%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ shows comparable precision.

Achievable Precision - The Case of D

- The relative uncertainties around SM central values (with 50ab ${ }^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}}{\mathcal{P}_{L}^{S M}}$	$\frac{\delta \mathcal{P}_{\perp}}{\mathcal{P}_{S M}^{S M}}$	$\frac{\delta \mathcal{A}_{F B}}{\mathcal{A}_{F B}^{S M}}$
Previous Precision	3%	9%	11%
New Precision	9%	4%	6%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ shows comparable precision.
- These are all theoretical results on the stat. error bar.

Achievable Precision - The Case of D

- The relative uncertainties around SM central values (with $50 \mathrm{ab}^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}}{\mathcal{P}_{L}^{S M}}$	$\frac{\delta \mathcal{P}_{\perp}}{\mathcal{P}_{S M}^{S M}}$	$\frac{\delta \mathcal{A}_{F B}}{\mathcal{A}_{F B}^{S M}}$
Previous Precision	3%	9%	11%
New Precision	9%	4%	6%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ shows comparable precision.
- These are all theoretical results on the stat. error bar. They can tell us if the observable is worth measuring experimentally. In this decay, all observables seem promising.

Achievable Precision - The Case of D

- The relative uncertainties around SM central values (with $50 \mathrm{ab}^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}}{\mathcal{P}_{L}^{S M}}$	$\frac{\delta \mathcal{P}_{\perp}}{\mathcal{P}_{S M}^{S M}}$	$\frac{\delta \mathcal{A}_{F B}}{\mathcal{A}_{F B}^{S M}}$
Previous Precision	3%	9%	11%
New Precision	9%	4%	6%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ shows comparable precision.
- These are all theoretical results on the stat. error bar. They can tell us if the observable is worth measuring experimentally. In this decay, all observables seem promising.
- Crucial to investigate the systematic uncertainties.

Achievable Precision - The Case of D^{*}

Achievable Precision - The Case of D^{*}

- The relative uncertainties around SM central values (with 50ab ${ }^{-1}$ data at Belle II):

Achievable Precision - The Case of D^{*}

- The relative uncertainties around SM central values (with $50 \mathrm{ab}^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}^{*}}{\mathcal{P}_{L}^{* S M}}$	$\frac{\delta \mathcal{P}_{S}^{*}}{\mathcal{P}_{\perp}^{* S M}}$	$\frac{\delta \mathcal{A}_{F B}^{*}}{\mathcal{A}_{F B}^{* S M}}$	$\frac{\delta \mathcal{A}_{S}^{*}}{\mathcal{A}_{L}^{* S M}}$
Precision	6%	9%	52%	14%

Achievable Precision - The Case of D^{*}

- The relative uncertainties around SM central values (with 50ab ${ }^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}^{*}}{\mathcal{P}_{L}^{* S M}}$	$\frac{\delta \mathcal{P}_{S}^{*}}{\mathcal{P}_{\perp}^{* S M}}$	$\frac{\delta \mathcal{A}_{F F B}^{*}}{\mathcal{A}_{F B}^{* S}}$	$\frac{\delta \mathcal{A}_{S}^{*}}{\mathcal{A}_{L}^{* S M}}$
Precision	6%	9%	52%	14%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ channel does not show comparable precision.

Achievable Precision - The Case of D^{*}

- The relative uncertainties around SM central values (with 50ab ${ }^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}^{*}}{\mathcal{P}_{L}^{* S M}}$	$\frac{\delta \mathcal{P}_{\perp}^{*}}{\mathcal{P}_{1}^{* S M}}$	$\frac{\delta \mathcal{A}_{* F B}^{*}}{\mathcal{A}_{F B}^{* F B}}$	$\frac{\delta \mathcal{A}_{S}^{*}}{\mathcal{A}_{L}^{* M}}$
Precision	6%	9%	52%	14%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ channel does not show comparable precision.
- Fairly good accuracy achievable for polarization asymmetries. Not so much for $\mathcal{A}_{F B / L}^{*}$. Maybe not worth pursuing experimentally?

Achievable Precision - The Case of D^{*}

- The relative uncertainties around SM central values (with 50ab ${ }^{-1}$ data at Belle II):

Obs	$\frac{\delta \mathcal{P}_{L}^{*}}{\mathcal{P}_{L}^{* S M}}$	$\frac{\delta \mathcal{P}_{\perp}^{*}}{\mathcal{P}_{\perp}^{* S M}}$	$\frac{\delta \mathcal{A}_{* B}^{*}}{\mathcal{A}_{F B}^{* * M}}$	$\frac{\delta \mathcal{A}_{S}^{*}}{\mathcal{A}_{L}^{* M}}$
Precision	6%	9%	52%	14%

- For $\tau \rightarrow \pi \nu . \tau \rightarrow \rho \nu$ channel does not show comparable precision.
- Fairly good accuracy achievable for polarization asymmetries. Not so much for $\mathcal{A}_{F B / L}^{*}$. Maybe not worth pursuing experimentally?
- Crucial to investigate the systematic uncertainties.

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.
- This generates different asymmetry observables sensitive to various WCs. Not all of the observables are independent.

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.
- This generates different asymmetry observables sensitive to various WCs. Not all of the observables are independent.
- What is a complete basis of observables in these semi-leptonic decays?[2003.02533]

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.
- This generates different asymmetry observables sensitive to various WCs. Not all of the observables are independent.
- What is a complete basis of observables in these semi-leptonic decays?[2003.02533]
- Of all the possible base observables, we can choose the ones with the best achievable experimental precision. Our work quantifies the stat. error.

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.
- This generates different asymmetry observables sensitive to various WCs. Not all of the observables are independent.
- What is a complete basis of observables in these semi-leptonic decays?[2003.02533]
- Of all the possible base observables, we can choose the ones with the best achievable experimental precision. Our work quantifies the stat. error.
- Other processes can be studied like this. How about the equivalent baryonic process?

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.
- This generates different asymmetry observables sensitive to various WCs. Not all of the observables are independent.
- What is a complete basis of observables in these semi-leptonic decays?[2003.02533]
- Of all the possible base observables, we can choose the ones with the best achievable experimental precision. Our work quantifies the stat. error.
- Other processes can be studied like this. How about the equivalent baryonic process?
- How can we measure triple-product observables like \mathcal{P}_{T} ?

More on Asymmetry Observables

- This program bridges between SMEFT operators and the observables in the experiments.
- We can study different subsequent decay channels; we can integrate the observable phase space in many different ways.
- This generates different asymmetry observables sensitive to various WCs. Not all of the observables are independent.
- What is a complete basis of observables in these semi-leptonic decays?[2003.02533]
- Of all the possible base observables, we can choose the ones with the best achievable experimental precision. Our work quantifies the stat. error.
- Other processes can be studied like this. How about the equivalent baryonic process?
- How can we measure triple-product observables like \mathcal{P}_{T} ? This probes CP-violation in these processes.

Summary

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.
- $R_{J / \psi}$ and $F_{D^{*}}^{L}$: The observed values are simply too large; they can not be explained by any BSM model.

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.
- $R_{J / \psi}$ and $F_{D^{*}}^{L}$: The observed values are simply too large; they can not be explained by any BSM model. These observable are not optimal for distinguishing different SMEFT operators effect either.

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.
- $R_{J / \psi}$ and $F_{D^{*}}^{L}$: The observed values are simply too large; they can not be explained by any BSM model. These observable are not optimal for distinguishing different SMEFT operators effect either.
- We propose measurement of $B \rightarrow D^{*} \tau \nu$ asymmetry observable using θ_{d} and s_{d}. We showed that percent-level accuracy is achievable.

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.
- $R_{J / \psi}$ and $F_{D^{*}}^{L}$: The observed values are simply too large; they can not be explained by any BSM model. These observable are not optimal for distinguishing different SMEFT operators effect either.
- We propose measurement of $B \rightarrow D^{*} \tau \nu$ asymmetry observable using θ_{d} and s_{d}. We showed that percent-level accuracy is achievable.
- The proposal includes measurement of a new asymmetry observable, namely A_{L}^{*} (a combination of a forward-backward and polarization asymmetry of τ).

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.
- $R_{J / \psi}$ and $F_{D^{*}}^{L}$: The observed values are simply too large; they can not be explained by any BSM model. These observable are not optimal for distinguishing different SMEFT operators effect either.
- We propose measurement of $B \rightarrow D^{*} \tau \nu$ asymmetry observable using θ_{d} and s_{d}. We showed that percent-level accuracy is achievable.
- The proposal includes measurement of a new asymmetry observable, namely A_{L}^{*} (a combination of a forward-backward and polarization asymmetry of τ).
- Other asymmetry observables (specially those probing CPV) in the relevant decays can be studied.

Summary

- Different observables in the $b \rightarrow c \tau \nu$ can be measured to study 5 operators in SMEFT.
- $R_{J / \psi}$ and $F_{D^{*}}^{L}$: The observed values are simply too large; they can not be explained by any BSM model. These observable are not optimal for distinguishing different SMEFT operators effect either.
- We propose measurement of $B \rightarrow D^{*} \tau \nu$ asymmetry observable using θ_{d} and s_{d}. We showed that percent-level accuracy is achievable.
- The proposal includes measurement of a new asymmetry observable, namely A_{L}^{*} (a combination of a forward-backward and polarization asymmetry of τ).
- Other asymmetry observables (specially those probing CPV) in the relevant decays can be studied.

Back up

- Details of Different B Factories
- Other Flavor Anomalies
- Uncertainties
- Fiertz Transformations
- The Running of Different WCs
- Calculation Steps, FFs
- Numerical Equations and Individual Operator Contributions
- $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$ and $b \rightarrow s \nu \nu$ Constraints
- $F_{D^{*}}^{L}$ and \mathcal{P}_{τ}^{*} Measurement
- $R_{J / \psi}$ Calculations in the SM
- $F_{D^{*}}^{L}$ and Other WCs
- Generating $C_{R L}^{V}$
- How about the q^{2}-Distributions?
- Why Real WCs
- More on Fisher Information

Belle

- Asymmetric $e^{+} e^{-}$beam at center of mass energy of $\Upsilon(4 S)$. Located at KEK facility near Tokyo. 2000s.
- $\sigma\left(e^{+} e^{-} \rightarrow B \bar{B}\right) \sim n b, \sim 1.25 \mathrm{ab}^{-1} .800 \times 10^{6} B \bar{B}$ pairs.
- Precise measurement of CKM entries and the unitarity triangle angles, Observation of CPV in neutral B-mesons, $R_{D^{(*)}}$ and $R_{K^{(*)}}$, observation of exotic states like $\mathrm{X}(3872), \ldots$
- First measurement of $B \rightarrow D^{(*)} \tau \nu$ in 2007.
- The measurement is done in various channels.
- Channels with similar final state for signal/bkg used to cancel the efficiency uncertainties.
- Rely on the SM q^{2}-distribution to extract some of the uncertainties, e.g. the efficiency uncertainties.

Babar

- Asymmetric $e^{+} e^{-}$beam at center of mass energy of $\Upsilon(4 S)$. Located at SLAC. 2000s.
- $\sigma\left(e^{+} e^{-} \rightarrow B \bar{B}\right) \sim n b, \sim 0.5 \mathrm{ab}^{-1} .400 \times 10^{6} B \bar{B}$ pairs.
- Similar physics achievements as Belle.
- First measurement of $B \rightarrow D^{(*)} \tau \nu$ in 2007-2008.
- First time observation of significant fluctuation : 2012.

Decay	$N_{\text {sig }}$	$N_{\text {norm }}$	$\varepsilon_{\text {sig }} / \varepsilon_{\text {norm }}$	$\mathcal{R}\left(D^{(*)}\right)$	$\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)(\%)$
$B^{-} \rightarrow D^{0} \tau^{-} \bar{\nu}_{\tau}$	314 ± 60	1995 ± 55	0.367 ± 0.011	$0.429 \pm 0.082 \pm 0.052$	$0.99 \pm 0.19 \pm 0.12 \pm 0.04$
$B^{-} \rightarrow D^{* 0} \tau^{-} \bar{\nu}_{\tau}$	639 ± 62	8766 ± 104	0.227 ± 0.004	$0.322 \pm 0.032 \pm 0.022$	$1.71 \pm 0.17 \pm 0.11 \pm 0.06$
$\bar{B}^{0} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}$	177 ± 31	986 ± 35	0.384 ± 0.014	$0.469 \pm 0.084 \pm 0.053$	$1.01 \pm 0.18 \pm 0.11 \pm 0.04$
$\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$	245 ± 27	3186 ± 61	0.217 ± 0.005	$0.355 \pm 0.039 \pm 0.021$	$1.74 \pm 0.19 \pm 0.10 \pm 0.06$
$\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$	489 ± 63	2981 ± 65	0.372 ± 0.010	$0.440 \pm 0.058 \pm 0.042$	$1.02 \pm 0.13 \pm 0.10 \pm 0.04$
$\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$	888 ± 63	11953 ± 122	0.224 ± 0.004	$0.332 \pm 0.024 \pm 0.018$	$1.76 \pm 0.13 \pm 0.10 \pm 0.06$

LHCb

- $p p$ collider located at CERN.
- $\sigma\left(e^{+} e^{-} \rightarrow B \bar{B}\right) \sim \mu b, \sim \mathcal{O}(1) \mathrm{fb}^{-1}$. $10^{10} B \bar{B}$ pairs.
- CPV studies, heavier B -mesons, exotic states, $R_{J / \psi}, \ldots$
- First time observation of significant fluctuation : 2012.

Other Anomalies

$R_{D^{(*)}}+R_{K^{(*)}}$

Model $R_{K^{(*)}} R_{D^{(*)}} \quad R_{K^{(*)}} \& R_{D^{(*)}}$

S_{1}	X *	\checkmark	\boldsymbol{X}^{*}
R_{2}	\boldsymbol{X}^{*}	\checkmark	\boldsymbol{x}
$\widetilde{R_{2}}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
S_{3}	\checkmark	x	x
U_{1}	\checkmark	\checkmark	\checkmark
U_{3}	\checkmark	x	x

Uncertainties

BaBar@Hadronic($\tau \rightarrow$ I)	
Sure of ucatain	
Sourco f unceratiaty	
ditive	
PDFs	
M	
$D^{* \rightarrow \rightarrow D^{(0)} \pi \pi}$	
Crosesfed cois	
MCotatistis	
Foedup/feeddown	
Mc stat	
Andency orrection	
Multiplicative uncertaintie	
	0.20 .2
Total sstat uncertainty	
Total uncertainty	16.29 .0

Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:

Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:

- (a) Colorless scalar, e.g. heavy higgs.

Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:

- (a) Colorless scalar, e.g. heavy higgs.
- (b) A heavy colorless vector: W^{\prime}.

Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:

- (a) Colorless scalar, e.g. heavy higgs.
- (b) A heavy colorless vector: W^{\prime}.

(a, b)

Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:

- (a) Colorless scalar, e.g. heavy higgs.
- (b) A heavy colorless vector: W^{\prime}.
- (c) Leptoquarks (LQs).

(a, b)

Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:

- (a) Colorless scalar, e.g. heavy higgs.
- (b) A heavy colorless vector: W^{\prime}.
- (c) Leptoquarks (LQs).

(a, b)

(c)

The Viable Minimal Models

The Viable Minimal Models

Mediator	Operator Combination	Viability
Colorless Scalars	$\mathcal{O}_{X L}^{S}$	$X\left(B r\left(B_{c} \rightarrow \tau \nu\right)\right)$
$W^{\prime \mu}$ (LH fermions)	$\mathcal{O}_{L L}^{V}$	X (collider bounds)
$S_{1} \mathrm{LQ}(\overline{3}, 1,1 / 3)($ LH fermions $)$	$\mathcal{O}_{L L}^{S}-x \mathcal{O}_{L L}^{T}, \mathcal{O}_{L L}^{V}$	\checkmark
$U_{1}^{\mu} \mathrm{LQ}(3,1,2 / 3)$ (LH fermions)	$\mathcal{O}_{R L}^{S} \mathcal{O}_{L L}^{V}$	\checkmark
$R_{2} \mathrm{LQ}(3,2,7 / 6)$	$\mathcal{O}_{L L}^{S}+x \mathcal{O}_{L L}^{T}$	\checkmark
$S_{3} \mathrm{LQ}(\overline{3}, 3,1 / 3)$	$\mathcal{O}_{L L}^{V}$	$X(b \rightarrow s \nu \nu)$
$U_{3}^{\mu} \mathrm{LQ}(3,3,2 / 3)$	$\mathcal{O}_{L L}^{V}$	$X(b \rightarrow s \nu \nu)$
$V_{2}^{\mu} \mathrm{LQ}(\overline{3}, 2,5 / 6)$	$\mathcal{O}_{R L}^{S}$	$X\left(R_{D(*)}\right.$ value)

The Viable Minimal Models

Mediator	Operator Combination	Viability
Colorless Scalars	$\mathcal{O}_{X L}^{S}$	$X\left(B r\left(B_{c} \rightarrow \tau \nu\right)\right)$
$W^{\prime \mu}$ (LH fermions)	$\mathcal{O}_{L L}^{V}$	$X($ collider bounds $)$
$S_{1} \mathrm{LQ}(\overline{3}, 1,1 / 3)$ (LH fermions)	$\mathcal{O}_{L L}^{S}-x \mathcal{O}_{L L}^{T}, \mathcal{O}_{L L}^{V}$	\checkmark
$U_{1}^{\mu} \mathrm{LQ}(3,1,2 / 3)($ LH fermions $)$	$\mathcal{O}_{R L}^{S}, \mathcal{O}_{L L}^{V}$	\checkmark
$R_{2} \mathrm{LQ}(3,2,7 / 6)$	$\mathcal{O}_{L L}^{S}+x \mathcal{O}_{L L}^{T}$	\checkmark
$S_{3} \mathrm{LQ}(\overline{3}, 3,1 / 3)$	$\mathcal{O}_{L L}^{V}$	$X(b \rightarrow s \nu \nu)$
$U_{3}^{\mu} \mathrm{LQ}(3,3,2 / 3)$	$\mathcal{O}_{L L}^{V}$	$X(b \rightarrow s \nu \nu)$
$V_{2}^{\mu} \mathrm{LQ}(\overline{3}, 2,5 / 6)$	$\mathcal{O}_{R L}^{S}$	$X\left(R_{D(*)}\right.$ value)
Colorless Scalars	$\mathcal{O}_{X R}^{S}$	$X\left(B r\left(B_{c} \rightarrow \tau \nu\right)\right)$
$W^{\prime \mu}$ (RH fermions)	$\mathcal{O}_{R R}^{V}$	\checkmark
$\tilde{R}_{2} \mathrm{LQ}(3,2,1 / 6)$	$\mathcal{O}_{R R}^{S}+x \mathcal{O}_{R R}^{T}$	$X(b \rightarrow s \nu \nu)$
$S_{1} \mathrm{LQ}(\overline{3}, 1,1 / 3)(\mathrm{RH}$ fermions)	$\mathcal{O}_{R R}^{V}, \mathcal{O}_{R R}^{S}-x \mathcal{O}_{R R}^{T}$	\checkmark
$U_{1}^{\mu} \mathrm{LQ}(3,1,2 / 3)(\mathrm{RH}$ fermions $)$	$\mathcal{O}_{L R}^{S}, \mathcal{O}_{R R}^{V}$	\checkmark

All Operators

	Operator Fierz identity	Allowed Current	$\delta \mathcal{L}_{\text {int }}$
$\begin{aligned} & \mathcal{O}_{V_{L}} \\ & \mathcal{O}_{V_{R}} \\ & \mathcal{O}_{S_{R}} \\ & \mathcal{O}_{S_{L}} \\ & \mathcal{O}_{T} \\ & \hline \end{aligned}$	$\begin{gathered} \left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} P_{L} \nu\right) \\ \left(\bar{c} \gamma_{\mu} P_{R} b\right)\left(\bar{\tau} \gamma^{\mu} P_{L} \nu\right) \\ \left(\bar{c} P_{R} b\right)\left(\bar{\tau} P_{L} \nu\right) \\ \left(\bar{c} P_{L} b\right)\left(\bar{\tau} P_{L} \nu\right) \\ \left(\bar{c} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu\right) \\ \hline \end{gathered}$	$\begin{gathered} (\mathbf{1}, \mathbf{3})_{0} \\ \rangle(\mathbf{1}, \mathbf{2})_{1 / 2} \end{gathered}$	$\begin{gathered} \left(g_{q} \bar{q}_{L} \boldsymbol{\tau} \gamma^{\mu} q_{L}+g_{\ell} \bar{\ell}_{L} \boldsymbol{\tau} \gamma^{\mu} \ell_{L}\right) W_{\mu}^{\prime} \\ \left(\lambda_{d} \bar{q}_{L} d_{R} \phi+\lambda_{u} \bar{q}_{L} u_{R} i \tau_{2} \phi^{\dagger}+\lambda_{\ell} \bar{\ell}_{L} e_{R} \phi\right) \end{gathered}$
$\begin{aligned} & \mathcal{O}_{V_{L}}^{\prime} \\ & \mathcal{O}_{V_{R}}^{\prime} \\ & \mathcal{O}_{S_{R}}^{\prime} \\ & \mathcal{O}_{S_{L}}^{\prime} \\ & \mathcal{O}_{T}^{\prime} \\ & \hline \end{aligned}$	$\begin{array}{rll} \left(\bar{\tau} \gamma_{\mu} P_{L} b\right)\left(\bar{c} \gamma^{\mu} P_{L} \nu\right) & \longleftrightarrow & \mathcal{O}_{V_{L}}\langle \\ \left(\bar{\tau} \gamma_{\mu} P_{R} b\right)\left(\bar{c} \gamma^{\mu} P_{L} \nu\right) & \longleftrightarrow & -2 \mathcal{O}_{S_{R}} \\ \left(\bar{\tau} P_{R} b\right)\left(\bar{c} P_{L} \nu\right) & \longleftrightarrow & -\frac{1}{2} \mathcal{O}_{V_{R}} \\ \left(\bar{\tau} P_{L} b\right)\left(\bar{c} P_{L} \nu\right) & \longleftrightarrow-\frac{1}{2} \mathcal{O}_{S_{L}}-\frac{1}{8} \mathcal{O}_{T} \\ \left(\bar{\tau} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{c} \sigma_{\mu \nu} P_{L} \nu\right) & \longleftrightarrow-6 \mathcal{O}_{S_{L}}+\frac{1}{2} \mathcal{O}_{T} \end{array}$	$\begin{aligned} & (\mathbf{3}, \mathbf{3})_{2 / 3} \\ & \rangle(\mathbf{3}, \mathbf{1})_{2 / 3} \\ & (\mathbf{3}, \mathbf{2})_{7 / 6} \end{aligned}$	$\begin{gathered} \lambda \bar{q}_{L} \boldsymbol{\tau} \gamma_{\mu} \ell_{L} \boldsymbol{U}^{\mu} \\ \left(\lambda \bar{q}_{L} \gamma_{\mu} \ell_{L}+\tilde{\lambda} \bar{d}_{R} \gamma_{\mu} e_{R}\right) U^{\mu} \\ \left(\lambda \bar{u}_{R} \ell_{L}+\tilde{\lambda} \bar{q}_{L} i \tau_{2} e_{R}\right) R \end{gathered}$
$\begin{aligned} & \hline \mathcal{O}_{V_{L}}^{\prime \prime} \\ & \mathcal{O}_{V_{R}}^{\prime} \\ & \mathcal{O}_{S_{R}}^{\prime \prime} \\ & \mathcal{O}_{S_{S_{L}}} \\ & \mathcal{O}_{T}^{\prime \prime} \\ & \hline \end{aligned}$	$\left(\bar{\tau} \gamma_{\mu} P_{L} c^{c}\right)\left(\bar{b}^{c} \gamma^{\mu} P_{L} \nu\right)$ \longleftrightarrow $-\mathcal{O}_{V_{R}}$ $\left(\bar{\tau} \gamma_{\mu} P_{R} c^{c}\right)\left(\bar{b}^{c} \gamma^{\mu} P_{L} \nu\right)$ \longleftrightarrow $-2 \mathcal{O}_{S_{R}}$ $\left(\bar{\tau} P_{R} c^{c}\right)\left(\bar{b}^{c} P_{L} \nu\right)$ \longleftrightarrow $\frac{1}{2} \mathcal{O}_{V_{L}}\langle$ $\left(\bar{\tau} P_{L} c^{c}\right)\left(\bar{b}^{c} P_{L} \nu\right)$ $\longleftrightarrow-\frac{1}{2} \mathcal{O}_{S_{L}}+\frac{1}{8} \mathcal{O}_{T}$ $\left(\bar{\tau}^{\mu \nu} P_{L} c^{c}\right)\left(\bar{b}^{c} \sigma_{\mu \nu} P_{L} \nu\right)$ $\longleftrightarrow-6 \mathcal{O}_{S_{L}}-\frac{1}{2} \mathcal{O}_{T}$	$\begin{gathered} (\overline{\mathbf{3}}, \mathbf{2})_{5 / 3} \\ (\overline{\mathbf{3}}, \mathbf{3})_{1 / 3} \\ \rangle(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3} \end{gathered}$	$\begin{gathered} \left(\lambda \bar{d}_{R}^{c} \gamma_{\mu} \ell_{L}+\tilde{\lambda} \bar{q}_{L}^{c} \gamma_{\mu} e_{R}\right) V^{\mu} \\ \lambda \bar{q}_{L}^{c} i \tau_{2} \tau \ell_{L} S \\ \left(\lambda \bar{q}_{L}^{c} i \tau_{2} \ell_{L}+\tilde{\lambda} \bar{u}_{R}^{c} e_{R}\right) S \end{gathered}$

WCs' Runnings

- The vector and the axial operators do not run in QCD.

WCs' Runnings

- The vector and the axial operators do not run in QCD.
- The scalars run faster than the tensor operators.

WCs' Runnings

- The vector and the axial operators do not run in QCD.
- The scalars run faster than the tensor operators.

$$
\left(\begin{array}{l}
C_{R L}^{S}\left(m_{b}\right) \\
C_{L L}^{S}\left(m_{b}\right) \\
C_{L L}^{T}\left(m_{b}\right)
\end{array}\right) \approx\left(\begin{array}{ccc}
1.46 & 0 & 0 \\
0 & 1.46 & -0.0177 \\
0 & -0.0003 & 0.878
\end{array}\right)\left(\begin{array}{l}
C_{R L}^{S}\left(m_{Z}\right) \\
C_{L L}^{S}\left(m_{Z}\right) \\
C_{L L}^{T}\left(m_{Z}\right)
\end{array}\right)
$$

WCs' Runnings

- The vector and the axial operators do not run in QCD.
- The scalars run faster than the tensor operators.

$$
\left(\begin{array}{l}
C_{R L}^{S}\left(m_{b}\right) \\
C_{L L}^{S}\left(m_{b}\right) \\
C_{L L}^{T}\left(m_{b}\right)
\end{array}\right) \approx\left(\begin{array}{ccc}
1.46 & 0 & 0 \\
0 & 1.46 & -0.0177 \\
0 & -0.0003 & 0.878
\end{array}\right)\left(\begin{array}{l}
C_{R L}^{S}\left(m_{z}\right) \\
C_{L L}^{S}\left(m_{Z}\right) \\
C_{L L}^{T}\left(m_{Z}\right)
\end{array}\right)
$$

- There is also running and mixing between $C_{L L}^{S}-C_{L L}^{T}$ above the EWSB scale.

WCs' Runnings

- The vector and the axial operators do not run in QCD.
- The scalars run faster than the tensor operators.

$$
\left(\begin{array}{l}
C_{R L}^{S}\left(m_{b}\right) \\
C_{L L}^{S}\left(m_{b}\right) \\
C_{L L}^{T}\left(m_{b}\right)
\end{array}\right) \approx\left(\begin{array}{ccc}
1.46 & 0 & 0 \\
0 & 1.46 & -0.0177 \\
0 & -0.0003 & 0.878
\end{array}\right)\left(\begin{array}{l}
C_{R L}^{S}\left(m_{Z}\right) \\
C_{L L}^{S}\left(m_{Z}\right) \\
C_{L L}^{T}\left(m_{Z}\right)
\end{array}\right)
$$

- There is also running and mixing between $C_{L L}^{S}-C_{L L}^{T}$ above the EWSB scale.
- All in all,

$$
C_{L L}^{S}\left(\Lambda_{N P}\right)= \pm 4 C_{L L}^{T}\left(\Lambda_{N P}\right) \Rightarrow C_{L L}^{S}\left(m_{b}\right) \approx \pm 8 C_{L L}^{T}\left(m_{b}\right)
$$

Form Factors

$$
\begin{aligned}
\langle D| \bar{c} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D}} h_{S}(w+1), \\
\langle D| \bar{c} \gamma^{5} b|\bar{B}\rangle & =\langle D| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle=0, \\
\langle D| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D}}\left[h_{+}\left(v+v^{\prime}\right)^{\mu}+h_{-}\left(v-v^{\prime}\right)^{\mu}\right], \\
\langle D| \bar{c} \sigma^{\mu \nu} b|\bar{B}\rangle & =i \sqrt{m_{B} m_{D}}\left[h_{T}\left(v^{\prime \mu} v^{\nu}-v^{\prime \nu} v^{\mu}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle D^{*}\right| \bar{c} b|\bar{B}\rangle= 0, \\
&\left\langle D^{*}\right| \bar{c} \gamma^{5} b|\bar{B}\rangle=-\sqrt{m_{B} m_{D^{*}}} h_{P}\left(\epsilon^{*} \cdot v\right), \\
&\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|\bar{B}\rangle= i \sqrt{m_{B} m_{D^{*}}} h_{V} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta}, \\
&\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle=\sqrt{m_{B} m_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon^{* \mu}-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v^{\mu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v^{\mu}\right], \\
&\left\langle D^{*}\right| \bar{c} \sigma^{\mu \nu} b|\bar{B}\rangle=-\sqrt{m_{B} m_{D^{*}}} \varepsilon^{\mu \nu \alpha \beta}\left[h_{T_{1}} \epsilon_{\alpha}^{*}\left(v+v^{\prime}\right)_{\beta}+h_{T_{2}} \epsilon_{\alpha}^{*}\left(v-v^{\prime}\right)_{\beta}+h_{T_{3}}\left(\epsilon^{*} \cdot v\right) v_{\alpha} v_{\beta}^{\prime}\right] . \\
& h_{-}=h_{A_{2}}=h_{T_{2}}=h_{T_{3}}=0, \\
& h_{+}=h_{V}=h_{A_{1}}=h_{A_{3}}=h_{S}=h_{P}=h_{T}=h_{T_{1}}=\xi . \\
& i \partial_{\mu}\left(\bar{c} \gamma^{\mu} b\right)=\left(m_{b}-m_{c}\right) \bar{c} b, \\
& i \partial_{\mu}\left(\bar{c} \gamma^{\mu} \gamma^{5} b\right)=-\left(m_{b}+m_{c}\right) \bar{c} \gamma^{5} b,
\end{aligned}
$$

Leptonic/Hadronic Functions

$$
\begin{aligned}
& H_{V_{1}, \lambda}^{\lambda_{M}}\left(q^{2}\right)=\epsilon_{\mu}^{*}(\lambda)\left\langle M\left(p_{M}, \epsilon\left(\lambda_{M}\right)\right)\right| \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle \\
& H_{V_{2}, \lambda}^{\lambda_{M}}\left(q^{2}\right)=\epsilon_{\mu}^{*}(\lambda)\left\langle M\left(p_{M}, \epsilon\left(\lambda_{M}\right)\right)\right| \bar{c} \gamma^{\mu}\left(1+\gamma^{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle \\
& H_{S_{1}}^{\lambda_{M}}\left(q^{2}\right)=\left\langle M\left(p_{M}, \epsilon\left(\lambda_{M}\right)\right)\right| \bar{c}\left(1+\gamma^{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle \\
& H_{S_{2}}^{\lambda_{M}}\left(q^{2}\right)=\left\langle M\left(p_{M}, \epsilon\left(\lambda_{M}\right)\right)\right| \bar{c}\left(1-\gamma^{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle \\
& H_{\lambda \lambda^{\prime}}^{\lambda_{M}}\left(q^{2}\right)=i \epsilon_{\mu}^{*}(\lambda) \epsilon_{\nu}^{*}\left(\lambda^{\prime}\right)\left\langle M\left(p_{M}, \epsilon\left(\lambda_{M}\right)\right)\right| \bar{c} \sigma^{\mu \nu}\left(1-\gamma^{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle \\
& L_{\lambda, l}^{\lambda_{\tau}}\left(q^{2}, \cos \theta_{\tau}\right)=\epsilon_{\mu}(\lambda)\left\langle\tau\left(p_{\tau}, \lambda_{\tau}\right) \bar{\nu}_{l}\left(p_{\nu}\right)\right| \bar{\tau} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{l}|0\rangle \\
& L_{l}^{\lambda_{\tau}}\left(q^{2}, \cos \theta_{\tau}\right)=\left\langle\tau\left(p_{\tau}, \lambda_{\tau}\right) \bar{\nu}_{l}\left(p_{\nu}\right)\right| \bar{\tau}\left(1-\gamma_{5}\right) \nu_{l}|0\rangle \\
& L_{\lambda^{\prime}, l}^{\lambda_{\tau}}\left(q^{2}, \cos \theta_{\tau}\right)=-i \epsilon_{\mu}(\lambda) \epsilon_{\nu}\left(\lambda^{\prime}\right)\left\langle\tau\left(p_{\tau}, \lambda_{\tau}\right) \bar{\nu}_{l}\left(p_{\nu}\right)\right| \bar{\tau} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) \nu_{l}|0\rangle,
\end{aligned}
$$

Numerical Equations

$$
\begin{aligned}
R_{D} & \approx R_{D}^{S M} \times\left\{\left(\left|C_{L L}^{V}+C_{R L}^{V}\right|^{2}+\left|C_{R R}^{V}+C_{L R}^{V}\right|^{2}\right)\right. \\
& +1.35\left(\left|C_{R L}^{S}+C_{L L}^{S}\right|^{2}+\left|C_{L R}^{S}+C_{R R}^{S}\right|^{2}\right)+0.70\left(\left|C_{L L}^{T}\right|^{2}+\left|C_{R R}^{T}\right|^{2}\right) \\
& +1.72 \operatorname{Re}\left[\left(C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{R L}^{S}+C_{L L}^{S}\right)^{*}+\left(C_{R R}^{V}+C_{L R}^{V}\right)\left(C_{L R}^{S}+C_{R R}^{S}\right)^{*}\right] \\
& \left.+1.00 \operatorname{Re}\left[\left(C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{T}\right)^{*}+\left(C_{L R}^{V}+C_{R R}^{V}\right)\left(C_{R R}^{T}\right)^{*}\right]\right\},
\end{aligned}
$$

Numerical Equations

$$
\begin{aligned}
R_{D} & \approx R_{D}^{S M} \times\left\{\left(\left|C_{L L}^{V}+C_{R L}^{V}\right|^{2}+\left|C_{R R}^{V}+C_{L R}^{V}\right|^{2}\right)\right. \\
& +1.35\left(\left|C_{R L}^{S}+C_{L L}^{S}\right|^{2}+\left|C_{L R}^{S}+C_{R R}^{S}\right|^{2}\right)+0.70\left(\left|C_{L L}^{T}\right|^{2}+\left|C_{R R}^{T}\right|^{2}\right) \\
& +1.72 \operatorname{Re}\left[\left(C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{R L}^{S}+C_{L L}^{S}\right)^{*}+\left(C_{R R}^{V}+C_{L R}^{V}\right)\left(C_{L R}^{S}+C_{R R}^{S}\right)^{*}\right] \\
& \left.+1.00 \operatorname{Re}\left[\left(C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{T}\right)^{*}+\left(C_{L R}^{V}+C_{R R}^{V}\right)\left(C_{R R}^{T}\right)^{*}\right]\right\} \\
R_{D^{*}} & \approx R_{D^{*}}^{S M} \times\left\{\left(\left|C_{L L}^{V}\right|^{2}+\left|C_{R L}^{V}\right|^{2}+\left|C_{L R}^{V}\right|^{2}+\left|C_{R R}^{V}\right|^{2}\right)\right. \\
& +0.04\left(\left|C_{R L}^{S}-C_{L L}^{S}\right|^{2}+\left|C_{L R}^{S}-C_{R R}^{S}\right|^{2}\right) \\
& +12.11\left(\left|C_{L L}^{T}\right|^{2}+\left|C_{R R}^{T}\right|^{2}\right)-1.78 \operatorname{Re}\left[\left(C_{L L}^{V}\right)\left(C_{R L}^{V}\right)^{*}+C_{R R}^{V}\left(C_{L R}^{V}\right)^{*}\right] \\
& +5.71 \operatorname{Re}\left[C_{R L}^{V}\left(C_{L L}^{T}\right)^{*}+C_{L R}^{V}\left(C_{R R}^{T}\right)^{*}\right] \\
& -4.15 \operatorname{Re}\left[\left(C_{L L}^{V}\right)\left(C_{L L}^{T}\right)^{*}+C_{R R}^{V}\left(C_{R R}^{T}\right)^{*}\right] \\
& \left.+0.12 \operatorname{Re}\left[\left(C_{L L}^{V}-C_{R L}^{V}\right)\left(C_{R L}^{S}-C_{L L}^{S}\right)^{*}+\left(C_{R R}^{V}-C_{L R}^{V}\right)\left(C_{L R}^{S}-C_{R R}^{S}\right)^{*}\right]\right\} .
\end{aligned}
$$

Numerical Equations

$$
\begin{aligned}
\mathcal{A}_{F B} & \approx \frac{1}{R_{D}}\left\{-0.11\left(\left|1+C_{L L}^{V}+C_{R L}^{V}\right|^{2}+\left|C_{R R}^{V}+C_{L R}^{V}\right|^{2}\right)\right. \\
& -0.35 \operatorname{Re}\left[\left(C_{L L}^{S}+C_{R L}^{S}\right)\left(C_{L L}^{T}\right)^{*}+\left(C_{R R}^{S}+C_{L R}^{S}\right)^{*}\left(C_{R R}^{T}\right)\right] \\
& -0.24 \operatorname{Re}\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{T}\right)^{*}+\left(C_{R R}^{V}+C_{L R}^{V}\right)^{*}\left(C_{R R}^{T}\right)\right] \\
& -0.15 \operatorname{Re}\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{S}+C_{R L}^{S}\right)^{*}+\left(C_{R R}^{V}+C_{L R}^{V}\right)^{*}\left(C_{R R}^{S}+C_{L R}^{S}\right)\right] \\
\mathcal{A}_{F B}^{*} & \approx \frac{1}{R_{D^{*}}}\left\{-0.813\left(\left|C_{L L}^{T}\right|^{2}+\left|C_{R R}^{T}\right|^{2}\right)\right. \\
& +0.016\left(\left|1+C_{L L}^{V}\right|^{2}+\left|C_{R R}^{V}\right|^{2}\right)-0.082\left(\left|C_{R L}^{V}\right|^{2}+\left|C_{L R}^{V}\right|^{2}\right) \\
& +0.066 \mathcal{R e}\left[C_{R L}^{V}\left(1+C_{L L}^{V}\right)^{*}+\left(C_{L R}^{V}\right)^{*} C_{R R}^{V}\right] \\
& +0.095 \operatorname{Re}\left[\left(C_{R L}^{S}-C_{L L}^{S}\right)\left(C_{L L}^{T}\right)^{*}+\left(C_{L R}^{S}-C_{R R}^{S}\right)^{*} C_{R R}^{T}\right] \\
& +0.395 \operatorname{Re}\left[\left(1+C_{L L}^{V}-C_{R L}^{V}\right)\left(C_{L L}^{T}\right)^{*}+\left(C_{R R}^{V}-C_{L R}^{V}\right)^{*}\left(C_{R R}^{T}\right)\right] \\
& +0.023 \operatorname{Re}\left[\left(C_{L L}^{S}-C_{R L}^{S}\right)\left(1+C_{L L}^{V}-C_{R L}^{V}\right)^{*}+\left(C_{R R}^{S}-C_{L R}^{S}\right)^{*}\left(C_{R R}^{V}-C_{L R}^{V}\right)\right. \\
& \left.-0.142 \operatorname{Re}\left[\left(C_{L L}^{T}\right)\left(1+C_{L L}^{V}+C_{R L}^{V}\right)^{*}+\left(C_{R R}^{T}\right)^{*}\left(C_{R R}^{V}+C_{L R}^{V}\right)\right]\right\},
\end{aligned}
$$

Numerical Equations

$$
\begin{aligned}
\mathcal{P}_{\tau} & \approx \frac{1}{R_{D}}\left\{0.402\left(\left|C_{L L}^{S}+C_{R L}^{S}\right|^{2}-\left|C_{R R}^{S}+C_{L R}^{S}\right|^{2}\right)\right. \\
& +0.013\left[\left|C_{L L}^{T}\right|^{2}-\left|C_{R R}^{T}\right|^{2}\right]+0.097\left[\left|1+C_{L L}^{V}+C_{R L}^{V}\right|^{2}-\left|C_{R R}^{V}+C_{L R}^{V}\right|^{2}\right] \\
& +0.512 \operatorname{Re} e\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{S}+C_{R L}^{S}\right)^{*}-\left(C_{R R}^{V}+C_{L R}^{V}\right)^{*}\left(C_{R R}^{S}+C_{L R}^{S}\right)\right] \\
& \left.-0.099 \operatorname{Re}\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{T}\right)^{*}-\left(C_{R R}^{V}+C_{L R}^{V}\right)^{*}\left(C_{R R}^{T}\right)\right]\right\} \\
\mathcal{P}_{\tau}^{*} & \approx \frac{1}{R_{D^{*}}}\left\{-0.127\left(\left|1+C_{L L}^{V}\right|^{2}+\left|C_{R L}^{V}\right|^{2}-\left|C_{R R}^{V}\right|^{2}-\left|C_{L R}^{V}\right|^{2}\right)\right. \\
& +0.011\left(\left|C_{L L}^{S}-C_{R L}^{S}\right|^{2}-\left|C_{R R}^{S}-C_{L R}^{S}\right|^{2}\right)+0.172\left(\left|C_{L L}^{T}\right|^{2}-\left|C_{R R}^{T}\right|^{2}\right) \\
& +0.031 \operatorname{Re}\left[\left(1+C_{L L}^{V}-C_{R L}^{V}\right)\left(C_{R L}^{S}-C_{L L}^{S}\right)^{*}-\left(C_{R R}^{V}-C_{L R}^{V}\right)^{*}\left(C_{L R}^{S}-C_{R R}^{S}\right)\right. \\
& +0.350 \operatorname{Re}\left[\left(1+C_{L L}^{V}\right)\left(C_{L L}^{T}\right)^{*}-\left(C_{R R}^{V}\right)^{*}\left(C_{R R}^{T}\right)\right] \\
& -0.481 \operatorname{Re}\left[\left(C_{R L}^{V}\right)\left(C_{L L}^{T}\right)^{*}-\left(C_{L R}^{V}\right)^{*}\left(C_{R R}^{T}\right)\right] \\
& \left.+0.216 \operatorname{Re}\left[\left(1+C_{L L}^{V}\right)\left(C_{R L}^{V}\right)^{*}-\left(C_{R R}^{V}\right)^{*}\left(C_{L R}^{V}\right)\right]\right\} .
\end{aligned}
$$

Numerical Equations

$$
\begin{aligned}
\mathcal{P}_{\perp} & \approx \frac{1}{R_{D}} \mathcal{R e}\left\{-0.350\left[\left(C_{L L}^{T}\right)\left(C_{L L}^{S}+C_{R L}^{S}\right)^{*}-\left(C_{R R}^{T}\right)^{*}\left(C_{R R}^{S}+C_{L R}^{S}\right)\right]\right. \\
& -0.357\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{S}+C_{R L}^{S}\right)^{*}-\left(C_{R R}^{V}+C_{L R}^{V}\right)^{*}\left(C_{R R}^{S}+C_{L R}^{S}\right)\right] \\
& -0.247\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)^{*}\left(C_{L L}^{T}\right)-\left(C_{R R}^{V}+C_{L R}^{V}\right)\left(C_{R R}^{T}\right)^{*}\right] \\
& \left.-0.250\left[1+C_{L L}^{V}+\left.C_{R L}^{V}\right|^{2}-\left|C_{R R}^{V}+C_{L R}^{V}\right|^{2}\right]\right\} \\
\mathcal{P}_{\perp}^{*} & \approx \frac{1}{R_{D^{*}}} \operatorname{Re}\left\{\left(C_{R R}^{S}-C_{L R}^{S}\right)\left[0.099 C_{R R}^{T}-0.054\left(C_{R R}^{V}-C_{L R}^{V}\right)\right]^{*}\right. \\
& -\left(C_{L L}^{S}-C_{R L}^{S}\right)^{*}\left[0.099 C_{L L}^{T}-0.054\left(1+C_{L L}^{V}-C_{R L}^{V}\right)\right] \\
& +\left(C_{R R}^{T}\right)\left[0.146 C_{R R}^{V}-0.478 C_{L R}^{V}-1.855 C_{R R}^{T}\right]^{*} \\
& -\left(C_{L L}^{T}\right)^{*}\left[0.146\left(1+C_{L L}^{V}\right)-0.478 C_{R L}^{V}-1.855 C_{L L}^{T}\right] \\
& +\left(C_{L R}^{V}\right)\left[-0.081 C_{R R}^{T}+0.025 C_{L R}^{V}-0.075 C_{R R}^{V}\right]^{*} \\
& -\left(C_{R L}^{V}\right)^{*}\left[-0.081 C_{L L}^{T}+0.025 C_{R L}^{V}-0.075\left(1+C_{L L}^{V}\right)\right] \\
& +\left(C_{R R}^{V}\right)\left[-0.071 C_{R R}^{T}-0.075 C_{L R}^{V}+0.126 C_{R R}^{V}\right]^{*}
\end{aligned}
$$

Numerical Equations

$$
\begin{aligned}
\mathcal{P}_{T} & \approx \frac{1}{R_{D}} \operatorname{Im}\left\{-0.350\left[\left(C_{L L}^{T}\right)\left(C_{L L}^{S}+C_{R L}^{S}\right)^{*}-\left(C_{R R}^{T}\right)^{*}\left(C_{R R}^{S}+C_{L R}^{S}\right)\right]\right. \\
& -0.357\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)\left(C_{L L}^{S}+C_{R L}^{S}\right)^{*}-\left(C_{R R}^{V}+C_{L R}^{V}\right)^{*}\left(C_{R R}^{S}+C_{L R}^{S}\right)\right] \\
& \left.-0.247\left[\left(1+C_{L L}^{V}+C_{R L}^{V}\right)^{*}\left(C_{L L}^{T}\right)-\left(C_{R R}^{V}+C_{L R}^{V}\right)\left(C_{R R}^{T}\right)^{*}\right]\right\} \\
\mathcal{P}_{T}^{*} & \approx \frac{1}{R_{D^{*}}} \operatorname{Im}\left\{\left(C_{R R}^{S}-C_{L R}^{S}\right)\left[0.099 C_{R R}^{T}-0.054\left(C_{R R}^{V}-C_{L R}^{V}\right)\right]^{*}\right. \\
& -\left(C_{L L}^{S}-C_{R L}^{S}\right)^{*}\left[0.099 C_{L L}^{T}-0.054\left(1+C_{L L}^{V}-C_{R L}^{V}\right)\right] \\
& +\left(C_{R R}^{T}\right)\left[0.146 C_{R R}^{V}-0.478 C_{L R}^{V}\right]^{*}-\left(C_{L L}^{T}\right)^{*}\left[0.146\left(1+C_{L L}^{V}\right)-0.478 C_{R L}^{V}\right] \\
& -\left(C_{L R}^{V}\right)\left[0.081 C_{R R}^{T}\right]^{*}+\left(C_{R L}^{V}\right)^{*}\left[0.081 C_{L L}^{T}\right] \\
& \left.-\left(C_{R R}^{V}\right)\left[0.071 C_{R R}^{T}\right]^{*}+\left(1+C_{L L}^{V}\right)^{*}\left[0.071 C_{L L}^{T}\right]\right\}
\end{aligned}
$$

The Theory of $R_{D(\cdot)}$

The Theory of $R_{D\left({ }^{(}\right)}$

Constrain I: $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$

- Other processes can limit these large coefficients; in particular $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$. In SM : $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \approx 2.3 \%$

Constrain I: $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$

- Other processes can limit these large coefficients; in particular $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$. In SM : $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \approx 2.3 \%$

$$
\begin{aligned}
\frac{\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)}{\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \mid \mathrm{SM}} & =\left|1+\left(C_{L L}^{V}-C_{R L}^{V}\right)+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}\left(C_{R L}^{S}-C_{L L}^{S}\right)\right|^{2} \\
& +\left|\left(C_{R R}^{V}-C_{L R}^{V}\right)+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}\left(C_{L R}^{S}-C_{R R}^{S}\right)\right|^{2}
\end{aligned}
$$

Constrain I: $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$

- Other processes can limit these large coefficients; in particular $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$. In SM : $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \approx 2.3 \%$

$$
\begin{aligned}
\frac{\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)}{\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \mid \mathrm{SM}} & =\left|1+\left(C_{L L}^{V}-C_{R L}^{V}\right)+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}\left(C_{R L}^{S}-C_{L L}^{S}\right)\right|^{2} \\
& +\left|\left(C_{R R}^{V}-C_{L R}^{V}\right)+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}\left(C_{L R}^{S}-C_{R R}^{S}\right)\right|^{2}
\end{aligned}
$$

- Enhanced contribution from the scalar operators (same combination appearing in $R_{D^{*}}$).

Constrain I: $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$

- Other processes can limit these large coefficients; in particular $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)$. In SM : $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \approx 2.3 \%$

$$
\begin{aligned}
\frac{\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)}{\left.\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)\right|_{\mathrm{SM}}} & =\left|1+\left(C_{L L}^{V}-C_{R L}^{V}\right)+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}\left(C_{R L}^{S}-C_{L L}^{S}\right)\right|^{2} \\
& +\left|\left(C_{R R}^{V}-C_{L R}^{V}\right)+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}\left(C_{L R}^{S}-C_{R R}^{S}\right)\right|^{2}
\end{aligned}
$$

- Enhanced contribution from the scalar operators (same combination appearing in $R_{D^{*}}$).
- $\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right) \leqslant 10 \%$ from the $B_{u} \rightarrow \tau \nu$ at Z peak at LEP.

Constrain II : $b \rightarrow s \nu \nu$

Constrain II : b \rightarrow sע

Some of the mediators generating the $C_{L L}^{V}$ or the $C_{R R}^{S}+x C_{R R}^{T}$ can generate $b \rightarrow s \nu \nu$ with the same couplings.

Constrain II : $b \rightarrow s \nu \nu$

Some of the mediators generating the $C_{L L}^{V}$ or the $C_{R R}^{S}+x C_{R R}^{T}$ can generate $b \rightarrow s \nu \nu$ with the same couplings.

$$
\begin{aligned}
\mathcal{O}_{L L}^{V} & =\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right) \\
\mathcal{O}_{R R}^{S} & =\left(\bar{c}_{L} b_{R}\right)\left(\bar{\tau}_{L} \nu_{R}\right)
\end{aligned}
$$

(c)

Constrain II : $b \rightarrow s \nu \nu$

Some of the mediators generating the $C_{L L}^{V}$ or the $C_{R R}^{S}+x C_{R R}^{T}$ can generate $b \rightarrow s \nu \nu$ with the same couplings.

$$
\begin{aligned}
\mathcal{O}_{L L}^{V} & =\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right) \\
\mathcal{O}_{R R}^{S} & =\left(\bar{c}_{L} b_{R}\right)\left(\bar{\tau}_{L} \nu_{R}\right)
\end{aligned}
$$

(c)

These are neutral current constraints so will put severe bounds on the affected models.

Constrain II : $b \rightarrow s \nu \nu$

$$
\begin{aligned}
B R\left(B \rightarrow X_{s} \nu \nu\right) & \leqslant 6.4 \times 10^{-4}, \\
B R(B \rightarrow K \nu \nu) & \leqslant 1.6 \times 10^{-5}, \\
B R\left(B \rightarrow K^{*} \nu \nu\right) & \leqslant 2.7 \times 10^{-5} .
\end{aligned}
$$

Constrain II : $b \rightarrow s \nu \nu$

$$
\begin{aligned}
& B R\left(B \rightarrow X_{s} \nu \nu\right) \leqslant 6.4 \times 10^{-4}, \\
& B R(B \rightarrow K \nu \nu) \leqslant 1.6 \times 10^{-5}, \\
& B R\left(B \rightarrow K^{*} \nu \nu\right) \leqslant 2.7 \times 10^{-5} . \\
& \mathcal{H}_{\text {eff }}=-2 \sqrt{2} G_{F} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi}\left[C_{L}^{\nu}\left(\bar{s} \gamma^{\mu}\left(1-\gamma^{5}\right) b\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)\right. \\
& \left.+C_{R}^{\nu}\left(\bar{s} \gamma^{\mu}\left(1+\gamma^{5}\right) b\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)\right], \\
& \epsilon \equiv \frac{\sqrt{\left|C_{L}^{\nu}\right|^{2}+\left|C_{R}^{\nu}\right|^{2}}}{\left|\left(C_{L}^{\nu}\right)^{S M}\right|}, \quad \eta \equiv-\frac{\operatorname{Re}\left(C_{L}^{\nu} C_{R}^{\nu *}\right)}{\left|C_{L}^{\nu}\right|^{2}+\left|C_{R}^{\nu}\right|^{2}} .
\end{aligned}
$$

Constrain II : $b \rightarrow s \nu \nu$

$$
\begin{aligned}
& B R\left(B \rightarrow X_{s} \nu \nu\right) \leqslant 6.4 \times 10^{-4}, \\
& B R(B \rightarrow K \nu \nu) \leqslant 1.6 \times 10^{-5}, \\
& B R\left(B \rightarrow K^{*} \nu \nu\right) \leqslant 2.7 \times 10^{-5} . \\
& \mathcal{H}_{\text {eff }}=-2 \sqrt{2} G_{F} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi}\left[C_{L}^{\nu}\left(\bar{s} \gamma^{\mu}\left(1-\gamma^{5}\right) b\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)\right. \\
& \left.+C_{R}^{\nu}\left(\bar{s} \gamma^{\mu}\left(1+\gamma^{5}\right) b\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)\right], \\
& \epsilon \equiv \frac{\sqrt{\left|C_{L}^{\nu}\right|^{2}+\left|C_{R}^{\nu}\right|^{2}}}{\left|\left(C_{L}^{\nu}\right)^{S M}\right|}, \quad \eta \equiv-\frac{\operatorname{Re}\left(C_{L}^{\nu} C_{R}^{\nu *}\right)}{\left|C_{L}^{\nu}\right|^{2}+\left|C_{R}^{\nu}\right|^{2}} . \\
& B R(B \rightarrow K \nu \nu)=4.5 \times 10^{-6}(1-2 \eta) \epsilon^{2}, \\
& B R\left(B \rightarrow K^{*} \nu \nu\right)=6.8 \times 10^{-6}(1+1.31 \eta) \epsilon^{2}, \\
& B R\left(B \rightarrow X_{s} \nu \nu\right)=2.7 \times 10^{-5}(1+0.09 \eta) \epsilon^{2} .
\end{aligned}
$$

Constrain II : $b \rightarrow s \nu \nu$

$$
\begin{gathered}
B R\left(B \rightarrow X_{s} \nu \nu\right) \leqslant 6.4 \times 10^{-4}, \\
B R(B \rightarrow K \nu \nu) \leqslant 1.6 \times 10^{-5}, \\
B R\left(B \rightarrow K^{*} \nu \nu\right) \leqslant 2.7 \times 10^{-5} . \\
\mathcal{H}_{\mathrm{eff}}=-2 \sqrt{2} G_{F} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi}\left[C_{L}^{\nu}\left(\bar{s} \gamma^{\mu}\left(1-\gamma^{5}\right) b\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)\right. \\
\left.+\quad C_{R}^{\nu}\left(\bar{s}^{\mu}\left(1+\gamma^{5}\right) b\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)\right], \\
\epsilon \equiv \frac{\sqrt{\left|C_{L}^{\nu}\right|^{2}+\left|C_{R}^{\nu}\right|^{2}}}{\mid\left(C_{L}^{\nu}\right)^{S M \mid}}, \eta \equiv-\frac{\mathcal{R e}\left(C_{L}^{\nu} C_{R}^{\nu *}\right)}{\left|C_{L}^{\nu}\right|^{2}+\left|C_{R}^{\nu}\right|^{2}} . \\
B R(B \rightarrow K \nu \nu)=4.5 \times 10^{-6}(1-2 \eta) \epsilon^{2}, \\
B R\left(B \rightarrow K^{*} \nu \nu\right)=6.8 \times 10^{-6}(1+1.31 \eta) \epsilon^{2}, \\
B R\left(B \rightarrow X_{s} \nu \nu\right)= \\
C_{L L}^{V} \leqslant 0.006, \\
\\
\\
C_{R R}^{S} \leqslant 0.01 .
\end{gathered}
$$

\mathcal{P}_{τ} Measurement

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{\mathrm{hel}}}=\frac{1}{2}\left(1+\alpha_{d} \mathcal{P}_{\tau}^{*} \cos \theta_{\mathrm{hel}}\right)
$$

$$
\begin{gathered}
\cos \theta_{\tau d}=\frac{2 E_{\tau} E_{d}-m_{\tau}^{2}-m_{d}^{2}}{2\left|\vec{p}_{\tau}\right|\left|\vec{p}_{d}\right|} \quad q^{2}-\text { frame } \\
\left|\vec{p}_{\tau}\right|=\frac{q^{2}-m_{\tau}^{2}}{2 \sqrt{q^{2}}} \quad q^{2}-\text { frame }
\end{gathered}
$$

$$
\left|\overrightarrow{p_{d}^{\tau}}\right| \cos \theta_{\mathrm{hel}}=-\gamma \frac{\left|\vec{p}_{\tau}\right|}{E_{\tau}} E_{d}+\gamma\left|\vec{p}_{d}\right| \cos \theta_{\tau d} \quad \tau-\text { frame }
$$

$F_{D^{*}}^{L}$ Measurement

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{\text {nel }}\left(D^{*}\right)}=\frac{3}{4}\left[2 F_{L}^{D^{*}} \cos ^{2}\left(\theta_{\text {hel }}\left(D^{*}\right)\right)+\left(1-F_{L}^{D^{*}}\right) \sin ^{2}\left(\theta_{\text {hel }}\left(D^{*}\right)\right)\right]
$$

Number of events in:
I bin: 151 ± 21
II bin: 125 ± 19
III bin: 55 ± 15

- signal yields corrected for accaptance variations

Dominant systematics: - MC statistics (AR shape and peaking backgroud)
$= \pm 0.03$

Different Calculations for $R_{J / \psi}$ in the SM

Table 1. Model predictions of $R(J / \psi)$ classified by method, which are abbreviated as: constituent quark model (CQM), relativistic quark model (RCQM), QCD sum rules (QCDSR), nonrelativistic quark model (NRQM), nonrelativistic QCD (NRQCD), and perturbative QCD calculations (pQCD).

Model	$R_{\text {theory }}$	Year
CQM [19]	0.28	1998
QCDSR [20]	$0.25_{-0.09}^{+0.09}$	1999
RCQM [21]	0.26	2000
QCDSR [22]	0.25	2003
RCQM [23]	0.24	2006
NRQM [24]	$0.27_{-0}^{+0.02}$	2006
NRQCD [25]	$0.07_{-0.04}^{+0.06}$	2013
pQCD [26]	$0.29_{-0.09}^{+0.09}$	2013
pQCD [27]	$0.30_{-0.08}^{+0.01}$	2016
pQCD [28]	$0.29_{-0.07}^{+0.07}$	2017
CQM [29]	0.24	2017
pQCD [30]	$0.283_{-0.048}^{+0.048}$	2017
CQM [31]	$0.24_{-0.07}^{+0.07}$	2018
RCQM [32]	0.24	2018
Range	$0-0.48$	-

Explaining $F_{D^{\prime}}^{L}$

R_{D}	$R_{D^{*}}$	$B r\left(B_{C} \rightarrow \tau \nu\right)$	$C_{R L}^{V}$	$F_{D^{*}}^{L}$	$C_{R L}^{S}$	$C_{L L}^{S}$	$C_{L L}^{V}$	$C_{L L}^{T}$	$R_{J / \psi}$
0.400	0.300	0.1	-0.3	0.510	0.330	0.152	1.012	0.092	0.340
0.400	0.300	0.1	-0.5	0.532	0.481	0.321	0.890	0.118	0.347
0.400	0.300	0.1	-0.7	0.552	0.614	0.471	0.764	0.143	0.355
0.400	0.300	0.1	-1	0.580	0.785	0.665	0.567	0.180	0.365

Explaining $F_{D^{*}}^{L}$

R_{D}	$R_{D^{*}}$	$B r\left(B_{c} \rightarrow \tau \nu\right)$	$C_{R L}^{V}$	$F_{D^{*}}^{L}$	$C_{R L}^{S}$	$C_{L L}^{S}$	$C_{L L}^{V}$	$C_{L L}^{T}$	$R_{J / \psi}$
0.400	0.300	0.1	-0.3	0.510	0.330	0.152	1.012	0.092	0.340
0.400	0.300	0.1	-0.5	0.532	0.481	0.321	0.890	0.118	0.347
0.400	0.300	0.1	-0.7	0.552	0.614	0.471	0.764	0.143	0.355
0.400	0.300	0.1	-1	0.580	0.785	0.665	0.567	0.180	0.365

- We need at least all the operators with a given neutrino chirality to explain $R_{D^{(*)}}$ and $F_{D^{*}}^{L}$ together.

Explaining $F_{D^{*}}^{L}$

R_{D}	$R_{D^{*}}$	$B r\left(B_{c} \rightarrow \tau \nu\right)$	$C_{R L}^{V}$	$F_{D^{*}}^{L}$	$C_{R L}^{S}$	$C_{L L}^{S}$	$C_{L L}^{V}$	$C_{L L}^{T}$	$R_{J / \psi}$
0.400	0.300	0.1	-0.3	0.510	0.330	0.152	1.012	0.092	0.340
0.400	0.300	0.1	-0.5	0.532	0.481	0.321	0.890	0.118	0.347
0.400	0.300	0.1	-0.7	0.552	0.614	0.471	0.764	0.143	0.355
0.400	0.300	0.1	-1	0.580	0.785	0.665	0.567	0.180	0.365

- We need at least all the operators with a given neutrino chirality to explain $R_{D^{(*)}}$ and $F_{D^{*}}^{L}$ together.
- One may wonder if the observed $F_{D^{*}}^{L}$ is merely a fluctuation too. We should be skeptical of the current experimental result.

Generating $C_{R L}^{V}$

$$
\mathcal{O}_{R L}^{V}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)
$$

Generating $C_{R L}^{V}$

$$
\mathcal{O}_{R L}^{V}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)
$$

LQs	Coupling to q_{R} and L_{L} ?
$R_{2}=(3,2,7 / 6)$ and $\tilde{R}_{2}=(3,2,1 / 6)$	\checkmark
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\tilde{S}_{1}=(\overline{3}, 1,4 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $S_{1}=(\overline{3}, 1,1 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\bar{S}_{1}=(\overline{3}, 1,-2 / 3)$	X
$V_{2}=(\overline{3}, 2,5 / 6)$ and $\tilde{V}_{2}=(\overline{3}, 2,-1 / 6)$	\checkmark
$U_{3}=(3,3,2 / 3)$ and $\tilde{U}_{1}=(3,1,5 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $U_{1}=(3,1,2 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $\bar{U}_{1}=(3,1,-1 / 3)$	X

Generating $C_{R L}^{V}$

$$
\mathcal{O}_{R L}^{V}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)
$$

LQs	Coupling to q_{R} and L_{L} ?
$R_{2}=(3,2,7 / 6)$ and $\tilde{R}_{2}=(3,2,1 / 6)$	\checkmark
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\tilde{S}_{1}=(\overline{3}, 1,4 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $S_{1}=(\overline{3}, 1,1 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\tilde{S}_{1}=(\overline{3}, 1,-2 / 3)$	X
$V_{2}=(\overline{3}, 2,5 / 6)$ and $\tilde{V}_{2}=(\overline{3}, 2,-1 / 6)$	\checkmark
$U_{3}=(3,3,2 / 3)$ and $\tilde{U}_{1}=(3,1,5 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $U_{1}=(3,1,2 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $\bar{U}_{1}=(3,1,-1 / 3)$	X

- The vector LQs much more stringently constrained.*

Generating $C_{R L}^{V}$

$$
\mathcal{O}_{R L}^{V}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)
$$

LQs	Coupling to q_{R} and L_{L} ?
$R_{2}=(3,2,7 / 6)$ and $\tilde{R}_{2}=(3,2,1 / 6)$	\checkmark
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\tilde{S}_{1}=(\overline{3}, 1,4 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $S_{1}=(\overline{3}, 1,1 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\tilde{S}_{1}=(\overline{3}, 1,-2 / 3)$	X
$V_{2}=(\overline{3}, 2,5 / 6)$ and $\tilde{V}_{2}=(\overline{3}, 2,-1 / 6)$	\checkmark
$U_{3}=(3,3,2 / 3)$ and $\tilde{U}_{1}=(3,1,5 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $U_{1}=(3,1,2 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $\bar{U}_{1}=(3,1,-1 / 3)$	X

- The vector LQs much more stringently constrained.*
- $R_{2}+\tilde{R}_{2}$ is the least constrained way to generate $C_{R L}^{V}$.

Generating $C_{R L}^{V}$

$$
\mathcal{O}_{R L}^{V}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)
$$

LQs	Coupling to q_{R} and L_{L} ?
$R_{2}=(3,2,7 / 6)$ and $\tilde{R}_{2}=(3,2,1 / 6)$	\checkmark
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\tilde{S}_{1}=(\overline{3}, 1,4 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $S_{1}=(\overline{3}, 1,1 / 3)$	X
$S_{3}=(\overline{3}, 3,1 / 3)$ and $\bar{S}_{1}=(\overline{3}, 1,-2 / 3)$	X
$V_{2}=(\overline{3}, 2,5 / 6)$ and $\tilde{V}_{2}=(\overline{3}, 2,-1 / 6)$	\checkmark
$U_{3}=(3,3,2 / 3)$ and $\tilde{U}_{1}=(3,1,5 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $U_{1}=(3,1,2 / 3)$	X
$U_{3}=(3,3,2 / 3)$ and $\bar{U}_{1}=(3,1,-1 / 3)$	X

- The vector LQs much more stringently constrained.*
- $R_{2}+\tilde{R}_{2}$ is the least constrained way to generate $C_{R L}^{V}$.
- Still, further model-building gymnastic is required to keep the model alive.

Proposals for τ 's Asymmetry Observables

Proposals for τ 's Asymmetry Observables

Proposals for τ 's Asymmetry Observables

Proposals for τ 's Asymmetry Observables

- They can not tell LH/RH models apart. They have been shown to be useful for telling the scalar operators apart.

Proposals for τ 's Asymmetry Observables

- They can not tell LH/RH models apart. They have been shown to be useful for telling the scalar operators apart.
- The error bars are enormous.

Proposals for τ 's Asymmetry Observables

- They can not tell LH/RH models apart. They have been shown to be useful for telling the scalar operators apart.
- The error bars are enormous.

Global Maximum of $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\mathcal{O}=z_{5}^{\dagger} M_{\mathcal{O}} z_{5}=x_{5}^{T} M_{\mathcal{O}} x_{5}+y_{5}^{T} M_{\mathcal{O}} y_{5}
$$

$$
z_{5}=x_{5}+i y_{5}=\left(C_{-L}^{V}, C_{+L}^{V}, C_{-L}^{S}, C_{+L}^{S}, C_{L L}^{T}\right)
$$

Global Maximum of $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\mathcal{O}=z_{5}^{\dagger} M_{\mathcal{O}} z_{5}=x_{5}^{T} M_{\mathcal{O}} x_{5}+y_{5}^{T} M_{\mathcal{O} y_{5}}
$$

$$
\begin{aligned}
z_{5}= & x_{5}+i y_{5}=\left(C_{-L}^{V}, C_{+L}^{V}, C_{-L}^{S}, C_{+L}^{S}, C_{L L}^{T}\right), \\
\tilde{\mathcal{O}}= & \mathcal{O}-\lambda_{1}\left(R_{D}-R_{D}^{(0)}\right)-\lambda_{2}\left(R_{D^{*}}-R_{D^{*}}^{(0)}\right) \\
& -\lambda_{3}\left(\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)-\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)}\right)
\end{aligned}
$$

Global Maximum of $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\mathcal{O}=z_{5}^{\dagger} M_{\mathcal{O}} z_{5}=x_{5}^{T} M_{\mathcal{O}} x_{5}+y_{5}^{T} M_{\mathcal{O} y_{5}}
$$

$$
\begin{aligned}
z_{5}= & x_{5}+i y_{5}=\left(C_{-L}^{V}, C_{+L}^{V}, C_{-L}^{S}, C_{+L}^{S}, C_{L L}^{T}\right), \\
\tilde{\mathcal{O}} \quad & =\mathcal{O}-\lambda_{1}\left(R_{D}-R_{D}^{(0)}\right)-\lambda_{2}\left(R_{D^{*}}-R_{D^{*}}^{(0)}\right) \\
& -\lambda_{3}\left(B r\left(B_{c} \rightarrow \tau \nu\right)-\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)}\right) \\
= & x_{5}^{T}\left(M_{\mathcal{O}}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5} \\
& +y_{5}^{T}\left(M_{\mathcal{O}}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) y_{5} \\
& +\lambda_{1} R_{D}^{(0)}+\lambda_{2} R_{D^{*}}^{(0)}+\lambda_{3} \operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)}
\end{aligned}
$$

Global Maximum of $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\mathcal{O}=z_{5}^{\dagger} M_{\mathcal{O}} z_{5}=x_{5}^{T} M_{\mathcal{O}} x_{5}+y_{5}^{T} M_{\mathcal{O} y_{5}}
$$

$$
\begin{aligned}
z_{5}= & x_{5}+i y_{5}=\left(C_{-L}^{V}, C_{+L}^{V}, C_{-L}^{S}, C_{+L}^{S}, C_{L L}^{T}\right) \\
\tilde{\tilde{\mathcal{O}}}= & \mathcal{O}-\lambda_{1}\left(R_{D}-R_{D}^{(0)}\right)-\lambda_{2}\left(R_{D^{*}}-R_{D^{*}}^{(0)}\right) \\
& -\lambda_{3}\left(B r\left(B_{c} \rightarrow \tau \nu\right)-\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)}\right) \\
= & x_{5}^{T}\left(M_{\mathcal{O}}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5} \\
+ & y_{5}^{T}\left(M_{\mathcal{O}}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) y_{5} \\
& +\lambda_{1} R_{D}^{(0)}+\lambda_{2} R_{D^{*}}^{(0)}+\lambda_{3} \operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)} \\
\left(M_{\mathcal{O}}=\right. & \left.\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5} \\
= & \left(M_{\mathcal{O}}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) y_{5}=0
\end{aligned}
$$

Global Maximum of $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\begin{gathered}
\mathcal{O}=z_{5}^{\dagger} M_{\mathcal{O}} z_{5}=x_{5}^{T} M_{\mathcal{O}} x_{5}+y_{5}^{T} M_{\mathcal{O}} y_{5}, \\
z_{5}= \\
x_{5}+i y_{5}=\left(C_{-L}^{V}, C_{+L}^{V}, C_{-L}^{S}, C_{+L}^{S}, C_{L L}^{T}\right) \\
\tilde{\mathcal{O}}= \\
=\mathcal{O}-\lambda_{1}\left(R_{D}-R_{D}^{(0)}\right)-\lambda_{2}\left(R_{D^{*}}-R_{D^{*}}^{(0)}\right) \\
\\
=\lambda_{3}\left(B r\left(B_{c} \rightarrow \tau \nu\right)-\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)}\right) \\
+ \\
\left.x_{5}^{T}\left(M_{\mathcal{O}}^{T}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) y_{5} \\
\\
+\lambda_{1} R_{D}^{(0)}+\lambda_{2} R_{D^{*}}^{(0)}+\lambda_{3} \operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)} \\
\left(M_{\mathcal{O}}=\right. \\
= \\
= \\
\left.\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5} \\
\left.M_{\mathcal{O}}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) y_{5}=0
\end{gathered}
$$

We can only find one zero eigenvalue, thus $x_{5} \sim y_{5}$.

Global Maximum of $F_{D^{*}}^{L}$ and $R_{J / \psi}$

$$
\begin{gathered}
\mathcal{O}=z_{5}^{\dagger} M_{\mathcal{O}} z_{5}=x_{5}^{T} M_{\mathcal{O}} x_{5}+y_{5}^{T} M_{\mathcal{O}} y_{5}, \\
z_{5}= \\
x_{5}+i y_{5}=\left(C_{-L}^{V}, C_{+L}^{V}, C_{-L}^{S}, C_{+L}^{S}, C_{L L}^{T}\right) \\
\tilde{\mathcal{O}}= \\
=\mathcal{O}-\lambda_{1}\left(R_{D}-R_{D}^{(0)}\right)-\lambda_{2}\left(R_{D^{*}}-R_{D^{*}}^{(0)}\right) \\
\\
=\lambda_{3}\left(B r\left(B_{c} \rightarrow \tau \nu\right)-\operatorname{Br}\left(B_{c} \rightarrow \tau \nu\right)^{(0)}\right) \\
= \\
+x_{5}^{T}\left(M_{\mathcal{O}}^{T}-\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5} \\
\\
\left.\quad+\lambda_{1} R_{D}^{(0)}+\lambda_{2} R_{D^{*}}^{(0)}+\lambda_{3} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) y_{5}\left(B_{c} \rightarrow \tau \nu\right)^{(0)} \\
\left(M_{\mathcal{O}}=\right. \\
= \\
= \\
\left.\lambda_{1} M_{D}-\lambda_{2} M_{D^{*}}-\lambda_{3} M_{B_{c}}\right) x_{5} \\
\end{gathered}
$$

We can only find one zero eigenvalue, thus $x_{5} \sim y_{5}$. We can then rotate away the phase using the phase-invariance in $R_{D^{(*)}}$.

Fisher Information

$$
\mathcal{I}_{X}(\theta)=-\int d x f(x \mid \theta) \partial_{\theta}^{2} \log f(x \mid \theta)
$$

Fisher Information

$$
\mathcal{I}_{X}(\theta)=-\int d x f(x \mid \theta) \partial_{\theta}^{2} \log f(x \mid \theta)
$$

- Cramer-Rao Bound: For any unbiased estimator $\hat{\theta}$ of θ, $\sigma(\hat{\theta}) \geqslant 1 / \mathcal{I}_{X}(\theta)$.

Fisher Information

$$
\mathcal{I}_{X}(\theta)=-\int d x f(x \mid \theta) \partial_{\theta}^{2} \log f(x \mid \theta)
$$

- Cramer-Rao Bound: For any unbiased estimator $\hat{\theta}$ of θ, $\sigma(\hat{\theta}) \geqslant 1 / \mathcal{I}_{X}(\theta)$.

$$
\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \theta)
$$

Fisher Information

$$
\mathcal{I}_{X}(\theta)=-\int d x f(x \mid \theta) \partial_{\theta}^{2} \log f(x \mid \theta)
$$

- Cramer-Rao Bound : For any unbiased estimator $\hat{\theta}$ of θ,

$$
\begin{aligned}
\sigma(\hat{\theta}) \geqslant & 1 / \mathcal{I}_{X}(\theta) \\
& {\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \theta) . }
\end{aligned}
$$

- In the multi- θ case, the statement of the theorem becomes $\operatorname{cov}(\vec{\theta}) \geqslant \mathcal{I}_{X}^{-1}(\vec{\theta})$,

Fisher Information

$$
\mathcal{I}_{X}(\theta)=-\int d x f(x \mid \theta) \partial_{\theta}^{2} \log f(x \mid \theta)
$$

- Cramer-Rao Bound : For any unbiased estimator $\hat{\theta}$ of θ,

$$
\begin{aligned}
\sigma(\hat{\theta}) \geqslant & 1 / \mathcal{I}_{X}(\theta) \\
& {\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \theta) . }
\end{aligned}
$$

- In the multi- θ case, the statement of the theorem becomes $\operatorname{cov}(\vec{\theta}) \geqslant \mathcal{I}_{X}^{-1}(\vec{\theta})$, i.e. $\operatorname{cov}(\vec{\theta})-\mathcal{I}_{X}^{-1}(\vec{\theta})$ is a positive-semidefinite matrix.

Fisher Information

$$
\mathcal{I}_{X}(\theta)=-\int d x f(x \mid \theta) \partial_{\theta}^{2} \log f(x \mid \theta),
$$

- Cramer-Rao Bound : For any unbiased estimator $\hat{\theta}$ of θ,

$$
\begin{aligned}
\sigma(\hat{\theta}) & \geqslant 1 / \mathcal{I}_{X}(\theta) \\
& {\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \theta) . }
\end{aligned}
$$

- In the multi- θ case, the statement of the theorem becomes $\operatorname{cov}(\vec{\theta}) \geqslant \mathcal{I}_{X}^{-1}(\vec{\theta})$, i.e. $\operatorname{cov}(\vec{\theta})-\mathcal{I}_{X}^{-1}(\vec{\theta})$ is a positive-semidefinite matrix.
- In the limit of small correlation, we can again treat $\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}$ entries as a lower bound on the variance of each observable.

More RVs and Chain Rule for Fisher Information

More RVs and Chain Rule for Fisher Information

$$
\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j}=-\int d x d y f(x, y \mid \vec{\theta}) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x, y \mid \vec{\theta})
$$

More RVs and Chain Rule for Fisher Information

$$
\begin{gathered}
{\left[I_{X, Y}(\vec{\theta})\right]_{i j}=-\int d x d y f(x, y \mid \vec{\theta}) \partial_{\theta,} \partial_{\theta_{j}} \log f(x, y \mid \vec{\theta}) .} \\
{\left[I_{X, Y}(\vec{\theta})\right]_{i j}=\left[I_{X}(\vec{\theta})\right]_{i j}+\left[I_{Y \mid x}(\vec{\theta})\right]_{i j}}
\end{gathered}
$$

More RVs and Chain Rule for Fisher Information

$$
\begin{aligned}
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j} }=-\int d x d y f(x, y \mid \vec{\theta}) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x, y \mid \vec{\theta}) \\
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j}=\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}+\left[\mathcal{I}_{Y \mid X}(\vec{\theta})\right]_{i j} } \\
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j} }=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \vec{\theta}) \\
&-\int d x \int d y f(y \mid x, \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(y \mid x, \vec{\theta})
\end{aligned}
$$

More RVs and Chain Rule for Fisher Information

$$
\begin{aligned}
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j} }=-\int d x d y f(x, y \mid \vec{\theta}) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x, y \mid \vec{\theta}) \\
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j}=\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}+\left[\mathcal{I}_{Y \mid X}(\vec{\theta})\right]_{i j} } \\
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j} }=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \vec{\theta}) \\
&-\int d x \int d y f(y \mid x, \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(y \mid x, \vec{\theta})
\end{aligned}
$$

- In our proposal, $X=N_{ \pm}$(number of events with $c_{\theta_{d}}>0$ or $\left.c_{\theta_{d}}<0\right)$ and $Y=s_{d}$.

More RVs and Chain Rule for Fisher Information

$$
\begin{aligned}
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j} }=-\int d x d y f(x, y \mid \vec{\theta}) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x, y \mid \vec{\theta}) \\
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j}=\left[\mathcal{I}_{X}(\vec{\theta})\right]_{i j}+\left[\mathcal{I}_{Y \mid X}(\vec{\theta})\right]_{i j} } \\
& {\left[\mathcal{I}_{X, Y}(\vec{\theta})\right]_{i j} }=-\int d x f(x \mid \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(x \mid \vec{\theta}) \\
&-\int d x \int d y f(y \mid x, \theta) \partial_{\theta_{i}} \partial_{\theta_{j}} \log f(y \mid x, \vec{\theta})
\end{aligned}
$$

- In our proposal, $X=N_{ \pm}$(number of events with $c_{\theta_{d}}>0$ or $\left.c_{\theta_{d}}<0\right)$ and $Y=s_{d}$.
- We actually estimate $P\left(q^{2}\right)$ or $A\left(q^{2}\right)$ observables and only translate it into a total error on the inclusive observables (integrated over q^{2}) weighted by $d \Gamma / d q^{2}$, i.e. we assume the observables in different q^{2} bins are independent.

Fisher Information for Our Proposal

RV : : $i: \operatorname{sign}\left(\hat{\theta}_{d}\right), s_{d}$: daughter meson energy.

$$
\mathcal{I}_{N_{i}, s_{d}}\left(\theta_{i}, \theta_{j}\right)=-\sum_{i= \pm} \int d s_{d} f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \partial_{i, j}^{2} \log f\left(N_{i}, s_{d} \mid \vec{\theta}\right)
$$

Fisher Information for Our Proposal

RV : : $i: \operatorname{sign}\left(\hat{\theta}_{d}\right), s_{d}$: daughter meson energy.

$$
\begin{aligned}
\mathcal{I}_{N_{i}, s_{d}}\left(\theta_{i}, \theta_{j}\right) & =-\sum_{i= \pm} \int d s_{d} f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \partial_{i, j}^{2} \log f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \\
& =-\sum_{i= \pm} \frac{N_{i}}{N} \partial_{i, j}^{2} \log \frac{N_{i}}{N}
\end{aligned}
$$

Fisher Information for Our Proposal

RV : : $i: \operatorname{sign}\left(\hat{\theta}_{d}\right), s_{d}$: daughter meson energy.

$$
\begin{aligned}
\mathcal{I}_{N_{i}, s_{d}}\left(\theta_{i}, \theta_{j}\right) & =-\sum_{i= \pm} \int d s_{d} f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \partial_{i, j}^{2} \log f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \\
& =-\sum_{i= \pm} \frac{N_{i}}{N} \partial_{i, j}^{2} \log \frac{N_{i}}{N} \\
& -\sum_{i= \pm} \frac{N_{i}}{N} \int d s_{d} \mathcal{P}\left(s_{d} \mid i, \vec{\theta}\right) \partial_{i, j}^{2} \log \mathcal{P}\left(s_{d} \mid i, \vec{\theta}\right) . \\
\mathcal{P}^{(*)}\left(s_{d} \mid i\right) & =\frac{1}{1+i F_{A F B}^{(*)} A_{F B}^{(*)}\left(q^{2}\right)+i F_{\perp}^{(*)} P_{\perp}^{(*)}\left(q^{2}\right)} \\
& \times\left(f_{0}^{(*)}\left(s_{d}\right)+f_{L}^{(*)}\left(s_{d}\right) P_{L}^{(*)}\left(q^{2}\right)\right. \\
& \left.+i f_{A F B}^{(*)}\left(s_{d}\right) A_{F B}^{(*)}\left(q^{2}\right)+i f_{\perp}^{(*)}\left(s_{d}\right) P_{\perp}^{(*)}\left(q^{2}\right)\right)
\end{aligned}
$$

Fisher Information for Our Proposal

RVs : i: sign $\left(\hat{\theta}_{d}\right), s_{d}$: daughter meson energy.

$$
\begin{aligned}
\mathcal{I}_{N_{i}, s_{d}}\left(\theta_{i}, \theta_{j}\right) & =-\sum_{i= \pm} \int d s_{d} f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \partial_{i, j}^{2} \log f\left(N_{i}, s_{d} \mid \vec{\theta}\right) \\
& =-\sum_{i= \pm} \frac{N_{i}}{N} \partial_{i, j}^{2} \log \frac{N_{i}}{N} \\
& -\sum_{i= \pm} \frac{N_{i}}{N} \int d s_{d} \mathcal{P}\left(s_{d} \mid i, \vec{\theta}\right) \partial_{i, j}^{2} \log \mathcal{P}\left(s_{d} \mid i, \vec{\theta}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{P}^{(*)}\left(s_{d} \mid i\right) & =\frac{1}{1+i F_{A_{F B}}^{(*)} A_{F B}^{(*)}\left(q^{2}\right)+i F_{\perp}^{(*)} P_{\perp}^{(*)}\left(q^{2}\right)} \\
& \times\left(f_{0}^{(*)}\left(s_{d}\right)+f_{L}^{(*)}\left(s_{d}\right) P_{L}^{(*)}\left(q^{2}\right)\right. \\
& \left.+i f_{A_{F B}}^{(*)}\left(s_{d}\right) A_{F B}^{(*)}\left(q^{2}\right)+i f_{\perp}^{(*)}\left(s_{d}\right) P_{\perp}^{(*)}\left(q^{2}\right)\right)
\end{aligned}
$$

$i= \pm 1, F_{X}=\int d s_{d} f_{X}$

