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The Flavor Experiments

These experiments study different aspects of flavor physics:
e Precision measurement of the CKM matrix entries

Different measurements of CP-violation

e Hadron spectroscopy

Flavor physics precision measurements can unveil the structure of
NP in higher energies.
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e The most general dim-6 effective Hamiltonian:
4GEV,
Hep = < Z CA)SINO)ASINv

\/§ X=S,V,T
M,N=L,R
Oy = (EPub)(7Pyv),
(’),\‘f,,\, = (&y"Pmb)(Ty.Pnv),
(’),\7;,,\, = (o Pmb)(Tou, Pny),

for M,N=Ror L (SM: CY =1).
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(Ryjw) gy =023 -0.30,"  (Rysy),,, =0.71+£0.17 +£0.18.

e Maybe these observables prefer some of the operators over the
others?

e No single operator can accommodate these new observations.

e They all give rise to very small deviation from SM prediction for
F5. and Ry
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e We should go beyond one or two operators. But how?

e |s there any combination of the dim-6 operators that can
explain these observed values?

e What is the maximum attainable FEL)* or Ry, in the space of
all WCs?[1905.03311]
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e There are 10 dim-6 operators, i.e. the space of all possible
W(Cs has 20 real dimensions.

e We can, however, show that the maximum of FL, or RJ/,U, can
be obtained by focusing on only real WCs of operators with a
fixed neutrino handedness.

e We focus on the space of operators with LH neutrinos with
real WCs, a 5-dim space.

e Three further constraints : Rp, Rp+, Br(B. — 7). Two
remaining degrees of freedom to maximize FEL,* or Ry over.
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® Ry © No combination of the WCs can explain the observed
value. Fluctuations? Experimental Error?

e FL. : Any BSM explanation should include all 5 relevant
dim-6 operators (or their RH neutrino equivalent). There is no
model generating O, .

e Both these observables are very insensitive to NP effects, i.e.
NP WCs should be comparable to SM to have non-negligible
effect on these observables.

e Not the best observables to probe relevant SMEFT operators.

e |s there any other observables that can distinguish different
effective operators from one another?

e Some other asymmetry observables may help.
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O0=m/2 O=m (%)
() _ 1 _/ / dedr
AFB () ( 9—0 + e_ﬂ/z) do

Observable | Arg | A | PL Pl Py

SM value | —0.360 | 0.063 | 0.325 | —0.497 | —0.842

—0.499
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New Asymmetry Measurement

f=m/2 f=n (*) &) _ ()
() _ 1 _/ / dedr (0 _Tre T s
Ars = 1) ( o e_ﬂ/z) do > ¢ r 4 ré)

Observable |  Afg Afg PL Py P, Pt Pr | Px

SM value | —0.360 | 0.063 | 0.325 | —0.497 | —0.842 | —0.499 | 0 0

With enough precision, these observables can discern different
models/operators used for Rp.) anomalies [1810.06597].
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Back Up

Integrating over the phase space of B — D*)7u:

fol dcg + fi)l dcp

— fol dcg + ffl dcy

T+T3 )
+ — * =

2rE gre

dqzdfose = dg? <A(*)’i(q2)+ B™)*(q%) cos b + C)*(q?) cos” 0,
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Integrating over the phase space of B — D*)7u:

[y deg + [°, deg | — [ deg + [, deg
it +p r) AL
TR A
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— A(*),:t 2 B(*),:I: 2 97_ C(*),:t 2 2 97_
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[1810.06597] : B~ =0 = Arg = A;. B*~ #0 A°M = —0.322
Only P} has been measured so far. With terrible error bars!

We don’t directly observe 7.
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Integrating over the phase space of B — D*)7u:

[y deg + [°, deg | — [ deg + [, deg
rh+rg ) AL
TR G A

2= are
— A(*),:t 2 B(*),:I: 2 97_ C(*),:t 2 2 97_
dg?>dcosf.  dq? ( () + (g7) cos 0 + (g7) cos

AL <B(*)’+ + B(*%*) , AW = (B<*>»+ _ B(*)’*) .

[1810.06597] : B~ =0 = Arg = A;. B*~ #0 A°M = —0.322
Only P} has been measured so far. With terrible error bars!

We don't directly observe 7. Subsequent decays required.
20/26



New Asymmetry Measurement




New Asymmetry Measurement

e sy : Daughter meson (d) energy. 84 : d and D™ angle.

21/26



New Asymmetry Measurement

e sy : Daughter meson (d) energy. 84 : d and D™ angle.
o We are using the distribution of the events in s; and
sign (cosf4) to estimate PZ/L(qQ) and A;}B/L(qQ)

21/26



New Asymmetry Measurement

e sy : Daughter meson (d) energy. 84 : d and D™ angle.
o We are using the distribution of the events in s; and
sign (cosf4) to estimate PZ/L(qQ) and A;}B/L(qQ)

_ 1 dr
p (4%, 54, sign(cos 04)| Arg, Pr, P1) = =

[ dq
x| f(sq) + £ (s9)Pu(e?)

+ sign(cos8g) (F1(sa)P(q?) + b (sa) Ars(?))|
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e sy : Daughter meson (d) energy. 84 : d and D™ angle.
o We are using the distribution of the events in s; and
sign (cosf4) to estimate PZ/L(qQ) and A;}B/L(qQ)

1dl
p (q2,sd,sign(cos(9d)|./4;:3,PL,PL) = Fc(chF

% |f(sa) + £ (sa)Pule)
+ sign(cosy) (F/(sa)PL(4?) + i (sa)Ara(?))

i " o ok ok 1 dr
p (4°, sd, sign(cos 04)| Afg, Af, P{, P1) = T do?

x [f5(sa) + 174 (saYPL(q?) + sign (cos By) (£1(sa) P (¢?)

G (sa) AR () + 7 (s) AL )|
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e But how well can we measure these observables?

e One can estimate the stat. error bars from a fisher
information analysis.

e [1702.02773] : The proposal made in a slightly different
language for B — D decay.

e In its Fisher information analysis, [1702.02773] is missing a
term related to sign (cosfy). Including that improves the
precision.

22 /26
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The relative uncertainties around SM central values (with
50ab~! data at Belle Il):

Obs 5P | oPT | 0A% | AT
szM fpj_SM _Al*__gM ‘AISM

Precision | 6% 9% | 52% | 14%

For 7 — wv. 7 — pv channel does not show comparable
precision.

Fairly good accuracy achievable for polarization asymmetries.

Not so much for ATCB/L. Maybe not worth pursuing

experimentally?

Crucial to investigate the systematic uncertainties.

Back Up
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e This program bridges between SMEFT operators and the
observables in the experiments.

e We can study different subsequent decay channels; we can
integrate the observable phase space in many different ways.

e This generates different asymmetry observables sensitive to
various WCs. Not all of the observables are independent.

e What is a complete basis of observables in these semi-leptonic
decays?[2003.02533]

e Of all the possible base observables, we can choose the ones
with the best achievable experimental precision. Our work
quantifies the stat. error.

e Other processes can be studied like this. How about the
equivalent baryonic process?

e How can we measure triple-product observables like Pr? This
probes CP-violation in these processes.
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o Different observables in the b — c7v can be measured to
study 5 operators in SMEFT.

* Ry and Fb* : The observed values are simply too large;
they can not be explained by any BSM model. These
observable are not optimal for distinguishing different SMEFT
operators effect either.

e We propose measurement of B — D*7v asymmetry
observable using 64 and sy. We showed that percent-level
accuracy is achievable.

e The proposal includes measurement of a new asymmetry
observable, namely A7 (a combination of a forward-backward
and polarization asymmetry of 7).

e Other asymmetry observables (specially those probing CPV)
in the relevant decays can be studied.

THANK YOU!
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Fiertz Transformations
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Numerical Equations and Individual
Operator Contributions
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Br(B: — Tv) and b — svv Constraints
FEL)* and P} Measurement
Ry Calculations in the SM
FL. and Other WCs
Generating CI‘?/L

How about the qz»Distributions?
Why Real WCs

More on Fisher Information
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Back Up
Belle

e Asymmetric e"e~ beam at center of mass energy of T(45).
Located at KEK facility near Tokyo. 2000s.

e g(ete” — BB) ~ nb, ~ 1.25ab™1. 800 x 10° BB pairs.

e Precise measurement of CKM entries and the unitarity
triangle angles, Observation of CPV in neutral B-mesons,
Rp and Ry(+), observation of exotic states like X(3872), ...

e First measurement of B — D)7 in 2007.
e The measurement is done in various channels.

e Channels with similar final state for signal/bkg used to cancel
the efficiency uncertainties.

e Rely on the SM g?-distribution to extract some of the
uncertainties, e.g. the efficiency uncertainties.
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Babar

Asymmetric e e~ beam at center of mass energy of T(4S5).
Located at SLAC. 2000s.

o(ete™ — BB) ~ nb, ~ 0.5ab™!. 400 x 108 BB pairs.
Similar physics achievements as Belle.
First measurement of B — D*)7u in 2007-2008.

First time observation of significant fluctuation : 2012.

Decay Naig Nuorm Esig/Enorm R(D™) B(B — D™ 7v) (%)

B~ — D7 7, 314+£60 1995+55  0.367 +£0.011 0.429 + 0.082 + 0.052 0.99 + 0.19 & 0.12 + 0.04
B~ — D77, 639462 8766+ 104 0.227 +0.004 0.322 + 0.032 + 0.022 1.71 + 0.17 & 0.11 + 0.06
B DYr o, 177 +31 986 + 35 0.384 £ 0.014 0.469 =+ 0.084 + 0.053 1.01 + 0.18 + 0.11 + 0.04
B — D*"r v, 245+27 3186 £ 61 0.217 £ 0.005 0.355 & 0.039 + 0.021 1.74 £ 0.19 + 0.10 & 0.06

B - Dr o, 489 £ 63 2981 £ 65 0.372 4 0.010 0.440 £ 0.058 & 0.042 1.02 & 0.13 & 0.10 £ 0.04
B —» D't7v, 888+63 11953 £ 122  0.224 £ 0.004 0.332 £ 0.024 £+ 0.018 1.76 £ 0.13 £ 0.10 £ 0.06

29 /26



Back Up

LHCb

pp collider located at CERN.
o(ete” — BB) ~ ub, ~ O(1)fb~1. 100 BB pairs.

CPV studies, heavier B-mesons, exotic states, Ry, ...

e First time observation of significant fluctuation : 2012.
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Other Anomalies

T T

h’—>rp
B-Ke*e /B-Kutu~
R DO pu CP asym
1)
é B->D v
5
[S]
g B->K* 11 angular
g | Vol incl/excl
g | V| incl/excl
= B>t
g-2
€le
1 1 |
1 2 3 4

significance (o)
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Model RK(*) RD(*) RK(*) & RD(*)

Sy X
R, X

X*

S
SN N I N
x N X X X%
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1)

Uncertainties

BaBar@Hadronic(t—1) Belle@Semileptonic(t—1) Belle@Hadronic(t—h)

® R0
Source R(D* P,
Source of uncertainty R(D) R(D") Sources G ource )
Additive uncertainties C MC size Tor each PDF shape 22 (Gadronic B composition D |
DDFs PDF shape of the normalization 1n cos@ap-2] - (VG scatetio o cach PDF shape - —

5
- y S on

!;}‘C S Yo TT. ;: gg ¢ PDF shape of B » D' v, -2 ) (ruep roren 30% 0010
e Y S| (DD shape and yields of fake D : e e ! }

- '/ . shape and vields of B — " - Fake D* yield L7% 0.016
JOSRG ot PDF sh: d vields of B — XD %

(B — ) - (Reconstruction efficiency ratio Enorm/Esig - %

B— D™ty 21% 0.051

B(B - D**r"7,) 18

D o D o1 26 [odeling of semileptonic decay X
- ™__ : a L) 0.2 B D", 11% 0.003
Cross-feed - - =
Total systematic uncertainty e R
s MC statistics 24 15 : - D7 2.4% 0.008
or and €~ effic 2.19
FoedpToed-down SERY 7 daughter and £ efficiency 21% 0.018
Isospin constraints 12 03 MC statistics for efficiency calculation 1.0%

Fixed backgrounds
MC statistics 31 15

[ Scales with MC statistics ) (EviGen docay model )

Efficiency corrections (Fit bias 0.3% 0.008)
iplicati inties e e =
. - B(r~ — 7~vr) and B(r~ = p"vr) 0.3% 0.002
MC staistios 5 L ( Scales with DATA statistics ) (( ))
< P, correction function 0.1% 0.018
° Slihe Common sources
°/r* from D" — D 10 ( Theory/External j
Detection/Reconstruction 70 Rgging efficiency correction 4% 001
Blr~ = £~ owr) 2 0. f . . 2
s Irreducible 13% 0007
Total syst. uncertainty 96 55 Requires additional studies (D sub-decay branching fractions 0.7% 0.005)
Total stat. uncertainty 131 71 (Numbcr of BB 0.4% 0,005 )
Total uncertainty 162 9.0 Total systematic uncertainty Hos 02
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Three Classes of Solutions

Three broad classes of heavy mediators, i.e. minimal solutions:
e (a) Colorless scalar, e.g. heavy higgs.
e (b) A heavy colorless vector : W',
e (c) Leptoquarks (LQs).

c /‘r /T/V c
h =l n V  pm——————teemmanan L v/T

(a,b) (c)
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The Viable Minimal Models

Mediator ‘ Operator Combination ‘ Viability
Colorless Scalars o X (Br(B. — 1v))
W'H (LH fermions) oy, X (collider bounds)
S LQ (3,1,1/3) (LH fermions) 03, — xOf;, oY v
U LQ (3,1,2/3) (LH fermions) @R, O v
R, LQ (3,2,7/6) 07, +x0]; v
S5 LQ (3,3,1/3) O X (b— svv)
U4 LQ (3,3,2/3) oy, X (b — svv)
V4 LQ (3,2,5/6) OgL X (RD(X) value)
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Colorless Scalars o X (Br(B. — 1v))
W'H (LH fermions) oy, X (collider bounds)
S LQ (3,1,1/3) (LH fermions) 03, — xOf;, oY v
U LQ (3,1,2/3) (LH fermions) @R, O v
R, LQ (3,2,7/6) 07, +x0]; v
S5 LQ (3,3,1/3) O X (b— svv)
U4 LQ (3,3,2/3) oy, X (b — svv)
V4 LQ (3,2,5/6) OE’L X (RD(X) value)
Colorless Scalars O%r X (Br(Bc — 1v))
W't (RH fermions) 0¥ v
R LQ (3,2,1/6) O32p +xO0s X (b — svv)
S1LQ (3,1,1/3) (RH fermions) | O¥q, Ofr — xOks v
U LQ (3,1,2/3) (RH fermions) Ok, Okr v

a
N
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All Operators

Operator Fierz identity |Allowed Current OLint

Ov, | (eyuPLb) (74" PLv) (1,3)o (94G277"qr + gelLTy*LL)W,,
Ovg | (€yuPrb) (T4 PLv)
Osp (cPrb) (TPLv) _ o 5

Os,, (ePLb) (TPLv) >(11 2)12 (AaGrdro + AuGruriteg’ + AlLerd)
Or | (eo"” Ppb) (Tou PLv)

g 3
w| EuPnerre) o ou( (& Bara Hard
OV | (TyuPrb) (Ey*PLv) «— —20s, >(31 1)2/3 (Aqryule + Adryuer)U"
o (7Prb) (¢Prv) — 30v, _
.| (TPb)(ePv) > =305, — 01| (3,216 (A@rls + Aduiner)R
O | (Fo"”Prb) (o PLv) «— —60s, + 501
Vo | GwPLe) B9 Poy) = O, ) . .
V| (FYuPrc®) (4" PLv) «+—  —20s, (3:2)s/3 (MRl + Aqiyuer)V*
. (7Pac) (5 Puv) PN éOVL< (3,3)1/3 AqiiToTlL S
O4| (Pt EPw) s —L0s, + 1O >(3, D/ (Aggiale + Aager)S

Of |(Fo* Ppc®) (b0 PLy) «— —60s, — 301
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WCs' Runnings

The vector and the axial operators do not run in QCD.

The scalars run faster than the tensor operators.

Ca,(mp) 1.46 0 0 Ca(mz)
Co(mp) |~ | O 146  —0.0177 | | CP (mz)
C/l (mp) 0 —0.0003 0.878 Cl(mz)

There is also running and mixing between CLSL — C/l, above
the EWSB scale.

All in all,
CEL(/\NP) = :|:4CL7;(/\NP) = CEL(mb) ~ :|:8CL7L(mb).
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Form Factors

) = Vmpmphs (w+1),
B) =(D|&y*+°b|B) =0,
(Dley*b|B) = /mpmp [he (v + v/} + ho(v —2)"],
(D|eo*b|B) = iy/mpmp [hr (v —v™v")],
("2 |B) =0,
(D*|&y°b|B) = —y/mpmp~ hp (€ - v)
(D*|&y"b|B) = iv/mpmp~ hy e (,’jvgv/f ,
(D*|ey"9°b|B) = /mpmp~ [ha,(w + 1)€™ — hag(€* - v)v* — ha, (€7 - v)v'*],
(D*|eo™b|B) = —y/mpmp- & [hry€4(v + ') + hryel (v — v')g + by (€ - v)vavy].
he = hay = hay = hay = 0,
hy=hy = ha = hay = hs = hp = hp = hgy, = €.
0y, (ev*b) = (mp —me) b,
0, (677°) = — (my, +mc) &7,

0, (€o™b) = — (my, +m,) &y"b — (i0"€) b + € (i0"b)
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Leptonic/Hadronic Functions

Hp(a%) = en(N(M (par,€ (W) [ (1 = 7°)bl B(ps)) ,

Hp (@) = (N (M (par,€ () [ (1 +9°)b1B(p)) ,

Hg (@) = (M(par, € (Mar) [e(1 +1°)b| B(ps))

Hg(¢%) = (M(pa, e (\)) [e(1 = 7°)bl B(pp)) ,

H3 (@) = i€, (e (V) (M (par, € (M) [ea™ (1 = 7*)b| B(p)),

LY(q% cos0;) = eu(A\){(T(pr, Ar)2u(py) |77 (1 = 75)11)0)
L (g% cos0,) = (1(pr, A)iu(p,)|7(1 — 75)1]0) ,
L33y (%, cos0,) = —iey(N)e, (X){T(pr, Ar)2i(py)|T0™ (1 — 5)14|0)
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Numerical Equations

REY x { (1€l + CRLP + 1 Che + Cll)

1.35 (|CRL + CiuI* + |Cig + CRrl?) +0.70 (ICLI* + |CRg[%)
1.72Re [(C)L + Cr)(CR + Ci)* + (Crr + CLR)(Cik + CR)']
1.00Re [(C) + Cr(CL)* + (Clr + Crr)(CRr)]}

Rp

Q

+ o+ o+
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Numerical Equations

REY x { (1€l + CRLP + 1 Che + Cll)

1.35 (|CRL + CiuI* + |Cig + CRrl?) +0.70 (ICLI* + |CRg[%)
1.72Re [(C)L + Cr)(CRL + Ci1)* + (Crr + CLR)(Cik + CRR)']
1.00Re [(C) + Cr(CL)* + (Clr + Crr)(CRr)]}

Rp

Q

+ o+ o+

Rp-

%

REY x {(1CL1* + |Ca* + 1CRIP + | Crel?)

0.04 (|C8, — CE1? + |CPr — CEr )

1211 (|G 2 + |CIrlP) — 1.78Re [(CY)(CH) + Che(Clr)]
5.71Re [CY(CL)* + C(Chr)’]

4.15Re [(CY)(CL)" + Co(CRR)"]

0.12Re [(CYL — CH)(CRL — C2L)* + (C¥r — ClR)(Cir — Car)*]} -

o+ o+ o+

+
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Numerical Equations

1
Arg =~ RD{ 0.11 <|1+CLL+CRL| +}CRR+CLR| )
— 0.35Re [(C7 + CR)(ClL)" + (CRr + Cir)*(Crr)]
— 0.24Re [ (1+ CLL + CRL)(CLTL)* + (Car + CR)* (ChR)]
* 1 2 2
o~ R {70.813 (Ll +1¢kI")

0.016 (|1 + C1|° + | Chel*) —0.082 (|| + |c%[”)
0.066Re [Cr (1 + CY)* + (CR)* Chr]
0.095Re [(C8, — C2)(CL)* + (Cir — CEr)* Cigl
0.395Re [(1+ CY — CY)(CLL)* + (C¥r — CR)*(CRR)]
[(
[(

+ o+ o+ + o+

0.023Re [(Cj, — CR)(1 + C)L — CR)* + (CRr — Cir)*(Crr — Cl)
— 0.142Re [(C/)(1+ Gl + Cr)* + (CRr)*(Crr + ClR)] }»
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Numerical Equations

1 2 2
P, = R—D {0.402 <|CEL 4 C,§L| - |C.‘§R + CER| )
0013 [|GL[* ~ | Gel”] +0.007 [[1+ € + G f | Gl + 4]
0.512Re [(1+ CY, + CY)(CE + CE)" — (Che + CR)*(Cir + C2)]
— 0.099Re [(1+ ) + Cx)(ClL)" — (Chr + ClR)"(Chr)]}
* 1 2 2 2 2
P~ RT*{_OH? (|1+CLVL| + |Gl — | CRel” = | iR )

0.011 (|G, - Gl — |Chr — Cix[*) + 0172 (| L[ — | [%)
0.031Re [(1+ Y ~ ) (G — C)" — (G — C%)" (CBe — Cin
(1+ CLL (A (C¥R>* (CI;’FR)}

— 0.481Re [(CY)(C/)" — (CYR)(CAR)]
+ 0.216Re [ 1+ C(CR)” (CA/R)*(CL\??)]} :

+ o+ o+

0.350Re
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Numerical Equations

PL

%

—Re{ 0.350 {(CLL) (CLL + CRL) — (Cag)* (Cng + CER)}

— 0357 [(1+ QY + Ch) (GEL+ CR)™ — (Cha+ ClR)™ (G + Ci)]
— 0247 [(1+ Clf + Cg1)*(CL) — (Cgr + ClR)(CRR)']
~0.250 [\1 + G+ ChI" - |+ Cﬁ%ﬂ}

P~ R Re { (Cir — Ciz) [0.009Ck, — 0.054 (Ce — Cl%)]”

(€2, — C8,)" [0.099C/, —0.054 (1 + CY — C¥)]
(Car) [0.146CY¥: — 0.478C)% — 1.855C]"

— (C/)r[0.146(1 + C) — 0.478C, — 1.855C/]
(C%) [-0.081CF +0.025C% — 0.075C¥:]"
(C¥)* [-0.081C/; + 0.025CY, — 0.075(1 + CY)]
(C¥r) [-0.071CA% — 0.075C% + 0.126C]”
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Numerical Equations

1 & *
Pro~ o Im {0350 [(CL) (Gh + C&)" — (Che)" (Che + CF0)]

— 0357 [(1+ CY + ) (G + CR) " — (Gl + C%) " (G + B2
— 0247 [(1+ Clf + CR)"(ClL) — (Cir + ClR)(CAR)']}

Y2 %zm{(c,g,? — CR) [0.099C; —0.054 (C¥z — CR)]

(€2, — C8,)" [0.099C/, —0.054 (1 + CY — C¥)]

+ (Clg) [0.146C¥ — 0.478C)%]" — (C[)* [0.146(1 + CY) — 0.478C]

(C%) [0.081CA]" + (CX)* [0.081C/ ]

(CHe) [0.07LCE]" + (1+ €)* [0.071¢]1] }
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The Theory of Ry
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2
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Constrain | : Br(B. — 1v)

e Other processes can limit these large coefficients; in particular
Br(Bc — 7v). In SM : Br(B: — 1v) = 2.3%

> 2

Br(B. — Tv) mg

BI‘(BC — TI/)|SM

1+ (Gl — Cro) + (Ch - C&)

m;(mp + m¢)

5 2

m
(CRe — ClR) + mT(TB;mC) (Cir — Cir)

e Br(B: — tv) < 10% from the B, — 7v at Z peak at LEP.
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Constrain Il : b — svv

Some of the mediators generating the CLVL or the C,gR + XC,;FR can
generate b — svv with the same couplings.

Of = (&v"b)(FLvuv),
Opr = (CLbr)(TLIR),

T/v @
) ——oooooooo0os L v/t

(9)

These are neutral current constraints so will put severe bounds on
the affected models.
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Constrain Il : b — svv

BR(B — Xsvv) < 6.4x107%
BR(B — Kw) < 16x107°,
BR(B — K*'vv) < 27x107°.
o _ —
Her = —2V2GrVipVis,— [ (57"(1 = 7°)b) (77u(1 = 7))
+ g (57"(1+°)b) (711 = P)],
(TR . |CE PP+ I CRI?
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Constrain Il : b — svv

BR(B — Xsvv) < 6.4x107%
BR(B — Kww) < 1.6x107°,
BR(B — K*'vv) < 27x107°.
(0% _ —
Heg = *2\[2GFthVtZE [C[’ (S’y“(l — 75)b) (V’yu(l —WS)V)
+ GG (3" A +7°)b) (77.(1=°))],

= VIC? + [ CEP UE_Re(CECE*)

I(coyM |CL1? + | CRI?

BR(B — Kww) = 45x107%(1 —2n)é,

BR(B — K*vv) 6.8 x 107°(1 + 1.31n)é?,
BR(B — Xwv) = 2.7 x107°(1+ 0.099)e.
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P. Measurement

Coc
I'dcosehel - 2

T O
@~ @
pw- =0 S op=0

(1 I Oédp COs Ghel)

2E.Ey — m? — m?

cosb, g4 = — q2 — frame
2|pr [Pl
2 2
—m
4 T g? — frame

|p-| = 27\/?
P |

|| cos el = —7 Ed + v|pg|cos .4 T — frame
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Ry New Asymmetry Measurement

FL. Measurement

Summary
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N/0.33

1
rd

1601
140f
120
100[-

80|

60

40[-

20|

0

po 0.5961=+ 0.0779

TEUE SRREE FEREE FENTE FURTE FRRTS R Free

170908 -0.7 0.6 -0.5 0.4 -0.3 0.2 -0.1 0
cos®, (D¥)

hel

Number of events in:

I bin: 151421

Il bin: 12519

Il bin: 55+15

- signal yields corrected
for accaptance variations

Tero oy = 3[2FP cos?(Bha (D)) + (1 — FP™) sin? (6 (D*))]
h
Entries 3
- Mean -0.5902
RMS 0.2495
X2/ ndf 1.954/2

Dominant systematics:

- MC statistics (AR shape
and peaking backgroud)
= 40.03
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Different Calculations for R,/ in the SM

Table 1. Model predictions of R(.J/1) classified by method, which are abbreviated as: constituent
quark model (CQM), relativistic quark model (RCQM), QCD sum rules (QCDSR), nonrelativistic
quark model (NRQM), nonrelativistic QCD (NRQCD), and perturbative QCD calculations (pQCD).

Model Rineory Year
CQM [19] 0.28 1998
QCDSR [20] | 0.25733% 1999
RCQM [21] 0.26 2000
QCDSR  [22] 0.25 2003
RCQM [23] 0.24 2006

NRQM [24] | 0.2773%% 2006
NRQCD [25] | 0.0713%8 2013
pQCD [26] 0.291005 2013
pQCD [27] 0.30%0% 2016

pQCD [28] 0.29%307 2017
CQM [29] 0.24 2017
pQCD [30] | 028373948 2017
CQM [31] 0.241007 2018
RCQM [32] 0.24 2018
Range 0-0.48 =
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Explaining F5,

Ro | Ror |Br(Be—m) [ Cy | F5- | Ca | G | €Y T CL T Ry

0.400 | 0.300 0.1 -0.3 | 0.510 | 0.330 | 0.152 | 1.012 | 0.092 | 0.340
0.400 | 0.300 0.1 -0.5 | 0.532 | 0.481 | 0.321 | 0.890 | 0.118 | 0.347
0.400 | 0.300 0.1 -0.7 | 0.552 | 0.614 | 0.471 | 0.764 | 0.143 | 0.355

0.400 | 0.300 0.1 -1 | 0.580 | 0.785 | 0.665 | 0.567 | 0.180 | 0.365
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e We need at least all the operators with a given neutrino
chirality to explain Rp) and FL. together.
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Explaining F5,

Ro | Ror |Br(Be—m) [ Cy | F5- | Ca | G | €Y T CL T Ry
0.400 | 0.300 0.1 -0.3 [ 0.510 | 0.330 | 0.152 | 1.012 | 0.092 | 0.340
0.400 | 0.300 0.1 -0.5 [ 0.532 [ 0.481 | 0.321 | 0.890 | 0.118 | 0.347
0.400 | 0.300 0.1 -0.7 | 0.552 | 0.614 | 0.471 | 0.764 | 0.143 | 0.355
0.400 | 0.300 0.1 -1 ] 0.580 | 0.785 | 0.665 | 0.567 | 0.180 | 0.365

e We need at least all the operators with a given neutrino
chirality to explain Rp) and FL. together.

e One may wonder if the observed F,S* is merely a fluctuation
too. We should be skeptical of the current experimental result.
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Generating Cp,

Ok = (CrY"bR)(FLyuvL);
LQs Coupling to gg and L;?
Ry = (3,2,7/6) and R, = (3,2,1/6)
3 = (§ 31/3) and 51 = (?) 1,4/3)
Ss=(3,3,1/3) and S; = (3,1,1/3)
S3=1(3,3,1/3) and 51 = (3,1,-2/3)

Vo = (3,2,5/6) and Vs = (3,2, —1/6)
Us = (3,3,2/3) and Uy = (3,1,5/3)
Us = (3,3,2/3) and Uy = (3,1,2/3)
Us = (3,3,2/3) and 0; = (3,1,—1/3)

EIRIEIANRIRRSIAN

54 /26



Back Up

Generating Cp,

Ok = (Sry"br)(FLvuvL),

LQs Coupling to gg and L;?

=(3,2,7/6) and R, = (3,2,1/6)

5 (3,3,1/3) and 51 = (3,1,4/3)
Ss=(3,3,1/3) and S; = (3,1,1/3)
S3= (3 3,1/3) and 51 = (3 1,-2/3)
Vs = (3,2,5/6) and Vs = (3,2, —1/6)
Us = (3,3,2/3) and Uy = (3,1,5/3)
Us =(3,3,2/3) and U; = (3,1,2/3)
Us =(3,3,2/3) and U; = (3,1,-1/3)

EIRIEIANRIRRSIAN

e The vector LQs much more stringently constrained.*
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Generating Cp,

Ok = (Sry"br)(FLvuvL),

LQs Coupling to gg and L;?

=(3,2,7/6) and R, = (3,2,1/6)

5 (3,3,1/3) and 51 = (3,1,4/3)
Ss=(3,3,1/3) and S; = (3,1,1/3)
S5 = (3 3,1/3) and 51 = (_ 1,-2/3)
Vs = (3,2,5/6) and Vs = (3,2, —1/6)
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Us =(3,3,2/3) and U; = (3,1,2/3)
Us =(3,3,2/3) and U; = (3,1,-1/3)

EIRIEIANRIRRSIAN

e The vector LQs much more stringently constrained.*

e Ry + Ry is the least constrained way to generate C,\{L
[ ]
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Global Maximum of Fj. and Ry,

O = z;r Mpzs = X5T/VI0X5 < )/5TMO)/5,

z5 = x5 +iys = (C¥,, CY}, C21, C31, Cl)),
O  =0-M(Ro—RY) = X(Rp- — RY)
—\3(Br(B. — v) — Br(B. — 7v)®)
= x§ (Mo — MMp — XaMp+ — AsMp,)xs
+yg (Mo — AiMp — AaMp+ — A3Mg_)ys

+M R + 2RY 4 A3Br(B. — /)

(M@ - AlMD - )\ZMD* — A3MBC)X5
= (M@ — AlMD — )\QMD* — )\3I\/IBC)y5 = 0

We can only find one zero eigenvalue, thus x5 ~ y5. We can then
rotate away the phase using the phase-invariance in Rp.).
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Fisher Information

e Cramer-Rao Bound : For any unbiased estimator 0 of 0,

e |n the multi-6 case, the statement of the theorem becomes
cov(0) = T} (0), i.e. cov(0) — I () is a
positive-semidefinite matrix.

e In the limit of small correlation, we can again treat [IX(H_’)}

entries as a lower bound on the variance of each observable.
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More RVs and Chain Rule for Fisher Information

{Ixyy(é')} ; == / dxdyf(x, y]| _’)891.89] log f(x, y|6).

{Ix,v(q)} i [Ix(g)} i + {Iv\x(g)h.
= /dx/ dyf (y|x, 0)89,8@. log f(y|x, 5)

e In our proposal, X = N1 (number of events with ¢y, > 0 or
cp, <0)and Y = sg.
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More RVs and Chain Rule for Fisher Information

{Ixyy(é')} ; =— / dxdyf(x, y]| _’)891.89] log f(x, y|6).
[IX,Y( )L. = [Ix(g)}ﬁ + {Iv\x(g)} )

)

- /dX/ dyf(y\x, 9)891.8@. log f(y|Xa 5)

e In our proposal, X = N1 (number of events with ¢y, > 0 or
cp, <0)and Y = sg.

e We actually estimate P(q?) or A(g?) observables and only
translate it into a total error on the inclusive observables
(integrated over g°) weighted by dI'/dq?,
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RVs : i : sign (éd>, sq4 : daughter meson energy.
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= —Z 2. log
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Fisher Information for Our Proposal

RVs : i : sign (éd>, sq4 : daughter meson energy.

Tuw(0) = ~% / dsdf(/v,-,sdﬁ)aa log F(N;, 5410)
= _Z a
= Z /deP sd|/ IogP(5d|i,§).

1
1+/F()A()( )+/F()P( )(qz)
< (H2(s0) + £ s)PO(a?)
+ D (s)AR (@) + i (sa) PP (a?))

Arg

PO (sqli) =
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Fisher Information for Our Proposal

RVs : i : sign (éd>, sq4 : daughter meson energy.

Tuw(0) = ~% / dsdf(/v,-,sdﬁ)aa log F(N;, 5410)
= _Z a
= Z /deP sd|/ IogP(5d|i,§).

1
1+/F()A()( )+/F()P( )(qz)
(£8700) + £ (s) P (0?)
+ D (s)AR (@) + i (sa) PP (a?))

Arg

PO (sqli) =

X

| = 41, FX = fdsdfx 59 /26
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